Home
Class 12
PHYSICS
If a charged particle enters perpendicul...

If a charged particle enters perpendicular in the uniform magnetic field then

A

Energy remains constant but moment changes

B

Energy and momentum both remains constant

C

Momentum remains constant but energy changes

D

Neither energy nor momentum remains constant

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question regarding the behavior of a charged particle entering a uniform magnetic field perpendicularly, we can break down the solution step by step. ### Step-by-Step Solution: 1. **Understanding the Situation**: - A charged particle (like an electron or proton) is entering a uniform magnetic field at a right angle (90 degrees) to the direction of the magnetic field lines. 2. **Magnetic Force on the Charged Particle**: - The magnetic force acting on a charged particle moving in a magnetic field is given by the Lorentz force equation: \[ \vec{F} = q(\vec{v} \times \vec{B}) \] where \( q \) is the charge of the particle, \( \vec{v} \) is the velocity vector of the particle, and \( \vec{B} \) is the magnetic field vector. 3. **Direction of the Force**: - Since the particle enters the magnetic field perpendicularly, the angle between the velocity vector and the magnetic field vector is 90 degrees. Thus, the magnetic force will be at a right angle to the velocity of the particle. 4. **Work Done by the Magnetic Field**: - The work done by a force is given by the equation: \[ W = \vec{F} \cdot \vec{d} \] where \( \vec{d} \) is the displacement. Since the magnetic force is always perpendicular to the displacement of the charged particle, the work done by the magnetic field is zero: \[ W = 0 \] 5. **Kinetic Energy**: - Since the work done is zero, the kinetic energy of the charged particle remains constant. The equation for kinetic energy is: \[ KE = \frac{1}{2} mv^2 \] where \( m \) is the mass and \( v \) is the speed of the particle. Since the speed does not change, the kinetic energy remains constant. 6. **Momentum Change**: - Although the kinetic energy remains constant, the direction of the velocity changes due to the magnetic force acting on the particle. Momentum \( \vec{p} \) is given by: \[ \vec{p} = m\vec{v} \] Since the direction of \( \vec{v} \) changes, the momentum of the particle also changes even though its magnitude (speed) remains constant. 7. **Conclusion**: - Therefore, when a charged particle enters a uniform magnetic field perpendicularly, the energy remains constant while the momentum changes due to the change in direction of the velocity. ### Final Answer: - Energy remains constant, but momentum changes.
Promotional Banner

Topper's Solved these Questions

  • MOVING CHARGE AND MAGNESIUM

    AAKASH INSTITUTE|Exercise SECTION B|25 Videos
  • MOVING CHARGE AND MAGNESIUM

    AAKASH INSTITUTE|Exercise SECTION C|48 Videos
  • MOVING CHARGE AND MAGNESIUM

    AAKASH INSTITUTE|Exercise EXERCISE|30 Videos
  • MOTION IN STRAIGHT LINE

    AAKASH INSTITUTE|Exercise Assignment (SECTION - J)|2 Videos
  • MOVING CHARGES AND MAGNETISM

    AAKASH INSTITUTE|Exercise Assignment Section J (Aakash Challengers Questions)|5 Videos

Similar Questions

Explore conceptually related problems

A charged particle (q, m) enters perpendicular in a uniform magnetic field B and comes out field as shown. The angle of deviation theta time taken by particle to cross magnetic field will be

Assertion When a charged particle moves perpendicular to a uniform magnetic field then its momentum remains constant. Reason Magnetic force acts perpendicular to the velocity of the particle.

If a charged particle is a plane perpendicular to a uniform magnetic field with a time period T Then

What will be the path of a charged particle moving perpendicular to a uniform magnetic field?

A charged particle is projected perpendicular to a uniform magnetic field. Describe area bounded by the path of particle inside magnetic field, in terms of its kinetic energy.

When a charged particle moves perpendicular to a magnetic field, then:

AAKASH INSTITUTE-MOVING CHARGE AND MAGNESIUM-ASSIGNMENT (SECTION A)
  1. A particle of mass m carrying charge q is accelerated by a potential d...

    Text Solution

    |

  2. The net charge in a current carrying wire is zero. Them, why does a m...

    Text Solution

    |

  3. If a charged particle enters perpendicular in the uniform magnetic fie...

    Text Solution

    |

  4. The motioin of a charged particle can be used ot distinguish between a...

    Text Solution

    |

  5. Lorentz force

    Text Solution

    |

  6. a charged particle moves in a gravity free space without change in vel...

    Text Solution

    |

  7. A wire is bent in the form of an equilateral triangle of side 1m and c...

    Text Solution

    |

  8. A cyclotron's oscillator frequency is 10 MHz. What should be the opert...

    Text Solution

    |

  9. A negative charge is coming towards the observer. The direction of the...

    Text Solution

    |

  10. When equal current is passed through two coils equal magnetic field is...

    Text Solution

    |

  11. The radius of la circular current carrying coil is R. At what distance...

    Text Solution

    |

  12. Figure shows a current loop having two circular arcs joined by two rad...

    Text Solution

    |

  13. Which one of the following graphs shows the variation of magnetic indu...

    Text Solution

    |

  14. Two straight long conductors AOB and COD are perpendicular to each oth...

    Text Solution

    |

  15. The current I ampere is flowing in an equilateral triangle of side a t...

    Text Solution

    |

  16. A square frame of side l carries a current produces a field B at its c...

    Text Solution

    |

  17. The magneticl induction at the point O, if the wire carries a current ...

    Text Solution

    |

  18. The magnetic field intensity at the point O of a loop with current I, ...

    Text Solution

    |

  19. If an electron revolves around a nucleus in a circular orbit of radius...

    Text Solution

    |

  20. A thin disc of radius R and mass M has charge q uniformly distributed ...

    Text Solution

    |