Home
Class 12
MATHS
A=[0 1 3 0]a n dA^8+A^6+A^2+I V=[0 11](w...

`A=[0 1 3 0]a n dA^8+A^6+A^2+I V=[0 11](w h e r eIi s` the `2xx2` identity matrix`),` then the product of all elements of matrix `V` is _____.

Text Solution

Verified by Experts

The correct Answer is:
0

`A=[(0,1),(3,0)]`
`implies A^(2)=A.A=[(0,1),(3,0)][(0,1),(3,0)]=[(3,0),(0,3)]`
`implies A^(4)=A^(2). A^(2)=[(3,0),(0,3)][(3,0),(0,3)]=[(3^(2),0),(0,3^(2))]`
`implies A^(8)=[(3^(4),0),(0,3^(4))]`
and `A^(6)=A^(4). A^(2)=[(3^(2),0),(0,3^(2))][(3,0),(0,3)]=[(3^(3),0),(0,3^(3))]`
Let `V=[(x),(y)]`
`A^(8)+A^(6)+A^(4)+A^(2)+I`
`[(81,0),(0,81)]+[(27,0),(0,27)]+[(9,0),(0,9)]+[(3,0),(0,3)]+[(1,0),(0,1)]`
`=[(121,0),(0,121)]`
`(A^(8)+A^(6)+A^(4)+A^(2)+I)V=[(0),(11)]`
or `[(121,0),(0,121)][(x),(y)]=[(0),(11)]`
or `[(121x),(121y)]=[(0),(11)]`
`implies x=0` and `y=1//11`
`implies V=[(x),(y)]=[(0),(1//11)]`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • MATRICES

    CENGAGE|Exercise JEE Main Previous Year|11 Videos
  • MATRICES

    CENGAGE|Exercise JEE Advanced Previous Year|26 Videos
  • MATRICES

    CENGAGE|Exercise Exercise (Matrix)|5 Videos
  • MATHMETICAL REASONING

    CENGAGE|Exercise JEE Previous Year|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

A=[[0,13,0]] and A^(8)+A^(6)+A^(2)+IV=[[011]] (where Iis the 2xx2 identity matrix ), then the product of all elements of matrix V is

A=[[0,1],[3,0]]" and let "BV=[[0],[11]]" Where "B=A^(8)+A^6+A^(4)+A^(2)+I," (Where "I" is the "2times2" identity matrix) then the product of all elements of matrix "V" is "

Knowledge Check

  • Let A=[(0,1),(2,0)] and (A^(8)+A^(5)+A^(2)+I)V=[(32),(62)] where is the (2xx2 identity matrix). Then the product of all elements of matrix V is

    A
    2.72
    B
    1
    C
    3
    D
    `-2`
  • Let A=[(2,0,7),(0,1,0),(1,-2,1)] and B=[(-k,14k,7k),(0,1,0),(k,-4k,-2k)] . If AB=I , where I is an identity matrix of order 3, then the sum of all elements of matrix B is equal to

    A
    2
    B
    `(3)/(7)`
    C
    `(10)/(3)`
    D
    4
  • Similar Questions

    Explore conceptually related problems

    If A = [[0, 1],[3,0]]and (A^(8) + A^(6) + A^(4) + A^(2) + I) V= [[0],[11]], where V is a vertical vector and I is the 2xx2 identity matrix and if lambda is sum of all elements of vertical vector V , the value of 11 lambda is

    Let A be a 2xx2 matrix with non zero entries and let A^(2)=I , where I is 2xx2 identity matrix. Define Tr(A)= sum of diagonal elemets of A and |A|= determinant of matrix A. Statement 1: Tr(A)=0 Statement 2: |A|=1 .

    Let S be the set which contains all possible vaues fo I ,m ,n ,p ,q ,r for which A=[I^2-3p0 0m^2-8q r0n^2-15] be non-singular idempotent matrix. Then the sum of all the elements of the set S is ________.

    If A = [(1,1,1),(0,1,1),(0,0,1)] and M = A + A^(2) + A^(3) + . . . . + A^(20) then the sum of all the elements of the matrix M is equal to _____

    Let A be a 2xx2 matrix with non-zero entries and let A^(^^)2=I, where i is a 2xx2 identity matrix,Tr(A)i=sum of diagonal elements of A and |A|= determinant of matrix A.Statement 1:Tr(A)=0 Statement 2:|A|=1

    A is a 2 x 2 matrix, I is 2 x 2 identity matrix. IA - xIl=0 has the roots -1, 3. Then the sum of diagonal elements of A^2