Home
Class 12
MATHS
The right hand derivative of f(x)=[x]t a...

The right hand derivative of `f(x)=[x]t a npix a tx=7` is (where [.] denotes the greatest integer function) `0` b. `7pi` c. `-7pi` d. none of these

A

0

B

`7pi`

C

`-7pi`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B

`f'(7^(+))=underset(hrarr0)(lim)(f(7+h)-f(7))/(h)`
`=underset(hrarr0)(lim)([7+h]tan pi(7+h)-[7]tan 7pi)/(h)`
`=underset(hrarr0)(lim)(7 tan pi(7+h))/(h)`
`=7pi underset(hrarr0)(lim)(tanpi h)/(pih)`
`=7pi`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • METHODS OF DIFFERENTIATION

    CENGAGE|Exercise Single Correct Answer Type|46 Videos
  • MATRICES

    CENGAGE|Exercise Solved Examples And Exercises|165 Videos
  • METHODS OF DIFFERETIATION

    CENGAGE|Exercise Question Bank|29 Videos

Similar Questions

Explore conceptually related problems

The right hand derivative of f(x)=[x] tan pi xatx=7 is (where [.] denotes the greatest integer function) 0 b.7 pi c.-7 pi d. none of these

If the right hand derivative of f(x)=[x]tan pi x at x=7 is k pi then k=

Knowledge Check

  • Period of the function f(x) = [5x + 7] + cospix - 5x where [·] denotes greatest integer function is

    A
    3
    B
    `2pi`
    C
    2
    D
    none of these
  • int_(0)^(pi//3) [sqrt3 tan x] dx , where [.] denotes the greatest integer function is

    A
    `(pi)/(2)- "tan"^(-2) (2)/(sqrt3)`
    B
    `(5pi)/(6) - "tan"^(-1) (2)/(sqrt3)`
    C
    `(5pi)/(6)`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

    Draw the graph of [y] = sin x, x in [0,2pi] where [*] denotes the greatest integer function

    f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

    The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

    Evaluate lim_(x rarr(pi pi)/(4))[sin x+cos x], where [.] denotes the greatest integer function.

    Draw the graph of [y] = cos x, x in [0, 2pi], where [*] denotes the greatest integer function.