Home
Class 12
MATHS
lim(yto0) (sqrt(1+sqrt(1+y^4))-sqrt2)/y^...

`lim_(yto0) (sqrt(1+sqrt(1+y^4))-sqrt2)/y^4`

A

exists and equals `1/(4sqrt2)`

B

does not exist

C

exists and equals `1/(2sqrt2)`

D

exists and equals `1/(2sqrt2(sqrt2+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{y \to 0} \frac{\sqrt{1 + \sqrt{1 + y^4}} - \sqrt{2}}{y^4} \), we can follow these steps: ### Step 1: Substitute \( t = \sqrt{1 + y^4} \) Let \( t = \sqrt{1 + y^4} \). Then, as \( y \to 0 \), \( t \to \sqrt{1 + 0} = 1 \). ### Step 2: Express \( y^4 \) in terms of \( t \) From \( t = \sqrt{1 + y^4} \), we can square both sides to get: \[ t^2 = 1 + y^4 \implies y^4 = t^2 - 1 \] ### Step 3: Rewrite the limit in terms of \( t \) Now we can rewrite the limit: \[ \lim_{y \to 0} \frac{\sqrt{1 + \sqrt{1 + y^4}} - \sqrt{2}}{y^4} = \lim_{t \to 1} \frac{\sqrt{1 + t} - \sqrt{2}}{t^2 - 1} \] ### Step 4: Evaluate the limit Substituting \( t = 1 \) gives us an indeterminate form \( \frac{0}{0} \). We can apply L'Hôpital's Rule, which states that if we have an indeterminate form \( \frac{0}{0} \), we can differentiate the numerator and the denominator. #### Differentiate the numerator: \[ \frac{d}{dt}(\sqrt{1 + t}) = \frac{1}{2\sqrt{1 + t}} \] #### Differentiate the denominator: \[ \frac{d}{dt}(t^2 - 1) = 2t \] ### Step 5: Apply L'Hôpital's Rule Now we can apply L'Hôpital's Rule: \[ \lim_{t \to 1} \frac{\frac{1}{2\sqrt{1 + t}}}{2t} = \lim_{t \to 1} \frac{1}{4t\sqrt{1 + t}} \] ### Step 6: Substitute \( t = 1 \) Substituting \( t = 1 \): \[ \frac{1}{4 \cdot 1 \cdot \sqrt{1 + 1}} = \frac{1}{4 \cdot 1 \cdot \sqrt{2}} = \frac{1}{4\sqrt{2}} \] ### Final Answer Thus, the limit is: \[ \lim_{y \to 0} \frac{\sqrt{1 + \sqrt{1 + y^4}} - \sqrt{2}}{y^4} = \frac{1}{4\sqrt{2}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

lim_(y->oo)(sqrt(1+sqrt(1+y^(4)))-sqrt(2))/(y^(4))= (a) (1)/(4sqrt(2)) (b) (1)/(2sqrt(2)) (c) (1)/(2sqrt(2)(1+sqrt(2))) (d) does not exist

a=lim_(xrightarrow0)(sqrt(1+sqrt(1+x^4))-sqrt2)/(x^4),b=lim_(xrightarrow0)(sin^2x)/(sqrt2-(sqrt(1+cosx)) find ab^3

Knowledge Check

  • The value of lim_(x to 0) (sqrt(x^2+1)-1)/(sqrt(x^2+16)-4) is

    A
    3
    B
    4
    C
    1
    D
    2
  • The value of lim_(xrarroo)(sqrt(n^2+1)+sqrt(n))/(4sqrt(n^4+n)+4sqrt(n)) , is

    A
    0
    B
    1
    C
    `-1`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    lim_(y->0)[(sqrt(1-y^2)-sqrt(1+y^2))/y^2]

    The value of lim_(x rarr2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2) is (1)/(8sqrt(3))(b)(1)/(4sqrt(3)) (c) 0 (d) none of these

    lim_(x rarr0)(sqrt(1-x)-sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1+x))

    lim_(x rarr0)(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x^(2))-sqrt(1-x^(2))) equals

    lim_(x rarr0)(sqrt(1+x^(2))-sqrt(1+x))/(sqrt(1+x^(3))-sqrt(1+x))

    Evaluate lim_(x rarr 0) (sqrt(4+x)-sqrt(4-x))/(sqrt(9+x)-sqrt(9-x)) .