Home
Class 12
MATHS
If x = 3 tant and y = 3 sec t, then the ...

If x = 3 tant and y = 3 sec t, then the value of `(d^2y)/(dx^2)" at" t=pi/4` is

A

`3/(2sqrt2)`

B

`1/(3sqrt2)`

C

`1/6`

D

`1/(6sqrt2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\frac{d^2y}{dx^2}\) at \(t = \frac{\pi}{4}\) given \(x = 3 \tan t\) and \(y = 3 \sec t\), we will follow these steps: ### Step 1: Find \(\frac{dy}{dt}\) and \(\frac{dx}{dt}\) Given: - \(y = 3 \sec t\) To find \(\frac{dy}{dt}\): \[ \frac{dy}{dt} = 3 \sec t \tan t \] Now, for \(x\): - \(x = 3 \tan t\) To find \(\frac{dx}{dt}\): \[ \frac{dx}{dt} = 3 \sec^2 t \] ### Step 2: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} \] We know: \[ \frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} = \frac{1}{3 \sec^2 t} \] Thus, substituting: \[ \frac{dy}{dx} = \left(3 \sec t \tan t\right) \cdot \left(\frac{1}{3 \sec^2 t}\right) = \frac{\tan t}{\sec t} = \sin t \] ### Step 3: Find \(\frac{d^2y}{dx^2}\) To find \(\frac{d^2y}{dx^2}\), we differentiate \(\frac{dy}{dx}\) with respect to \(x\): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\sin t\right) = \frac{d}{dt}\left(\sin t\right) \cdot \frac{dt}{dx} \] Calculating \(\frac{d}{dt}\left(\sin t\right)\): \[ \frac{d}{dt}\left(\sin t\right) = \cos t \] Now substituting \(\frac{dt}{dx}\): \[ \frac{d^2y}{dx^2} = \cos t \cdot \frac{1}{3 \sec^2 t} = \frac{\cos t}{3 \sec^2 t} = \frac{\cos^3 t}{3} \] ### Step 4: Evaluate at \(t = \frac{\pi}{4}\) Now, substituting \(t = \frac{\pi}{4}\): \[ \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] Thus: \[ \frac{d^2y}{dx^2} = \frac{\left(\frac{1}{\sqrt{2}}\right)^3}{3} = \frac{1}{3 \cdot 2\sqrt{2}} = \frac{1}{6\sqrt{2}} \] ### Final Answer: The value of \(\frac{d^2y}{dx^2}\) at \(t = \frac{\pi}{4}\) is \(\frac{1}{6\sqrt{2}}\). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If x = 3 tan t and y = 3 sec t then the value of (d^2y)/(dx^2) at t = pi/4 , is 1/(ksqrt2) . The value of k is _________.

If x=f(t) and y=g(t), then write the value of (d^(2)y)/(dx^(2))

Knowledge Check

  • If x = 3 tan t and y = 3 sec t, then the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4) is

    A
    `(3)/(2sqrt(2))`
    B
    `(1)/(3sqrt(2))`
    C
    `(1)/(6)`
    D
    `(1)/(6sqrt(2))`
  • If x=t^2 and y=t^3 , then what is the value of (d^2y)/(dx^2) ?

    A
    1
    B
    `3/(2t)`
    C
    `3/(4t)`
    D
    `3/2`
  • If x=log t and y=t^2-1 , then what is the value of (d^2y)/(dx^2) at t=1 ?

    A
    2
    B
    3
    C
    `-4`
    D
    4
  • Similar Questions

    Explore conceptually related problems

    If x=a(cos t+t sin t) and y=a(sin t-t cos t),then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

    If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

    If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

    If x=cos 2t and y=sin^2 t , then what is the value of (d^2y)/(dx^2) ?

    If x sec theta , y = tan theta , then the value of (d^(2) y)/(dx^(2)) " at " theta = (pi)/(4) is