Home
Class 12
MATHS
Find the range of f(x) = (sin^(-1) x)^(2...

Find the range of `f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)`

A

`[(pi^2)/4, (9pi^2)/4 ]`

B

`[(3pi^2)/4, (11pi^2)/4 ]`

C

`[(5pi^2)/4, (13pi^2)/4 ]`

D

`[(7pi^2)/4, (15pi^2)/4 ]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = (\sin^{-1} x)^2 + 2\pi \cos^{-1} x + \pi^2 \), we will follow these steps: ### Step 1: Rewrite the Function We can rewrite \( \cos^{-1} x \) in terms of \( \sin^{-1} x \): \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] Thus, we can express \( f(x) \) as: \[ f(x) = (\sin^{-1} x)^2 + 2\pi \left(\frac{\pi}{2} - \sin^{-1} x\right) + \pi^2 \] ### Step 2: Simplify the Function Substituting the expression for \( \cos^{-1} x \) into \( f(x) \): \[ f(x) = (\sin^{-1} x)^2 + \pi^2 - 2\pi \sin^{-1} x + \pi^2 \] This simplifies to: \[ f(x) = (\sin^{-1} x)^2 - 2\pi \sin^{-1} x + 2\pi^2 \] ### Step 3: Identify the Quadratic Form Notice that the expression can be rewritten in a quadratic form: \[ f(x) = (\sin^{-1} x - \pi)^2 + \pi^2 \] This indicates that \( f(x) \) is a quadratic function in terms of \( \sin^{-1} x \). ### Step 4: Determine the Range of \( \sin^{-1} x \) The function \( \sin^{-1} x \) is defined for \( x \in [-1, 1] \). Therefore, the range of \( \sin^{-1} x \) is: \[ \sin^{-1} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \] ### Step 5: Find the Minimum and Maximum Values of \( f(x) \) To find the minimum and maximum values of \( f(x) \), we evaluate \( f(x) \) at the endpoints of the interval for \( \sin^{-1} x \). 1. **Minimum at \( \sin^{-1} x = -\frac{\pi}{2} \)**: \[ f\left(-\frac{\pi}{2}\right) = \left(-\frac{\pi}{2} - \pi\right)^2 + \pi^2 = \left(-\frac{3\pi}{2}\right)^2 + \pi^2 = \frac{9\pi^2}{4} + \pi^2 = \frac{13\pi^2}{4} \] 2. **Maximum at \( \sin^{-1} x = \frac{\pi}{2} \)**: \[ f\left(\frac{\pi}{2}\right) = \left(\frac{\pi}{2} - \pi\right)^2 + \pi^2 = \left(-\frac{\pi}{2}\right)^2 + \pi^2 = \frac{\pi^2}{4} + \pi^2 = \frac{5\pi^2}{4} \] ### Step 6: Conclusion on the Range Thus, the range of \( f(x) \) is: \[ \left[\frac{5\pi^2}{4}, \frac{13\pi^2}{4}\right] \]

To find the range of the function \( f(x) = (\sin^{-1} x)^2 + 2\pi \cos^{-1} x + \pi^2 \), we will follow these steps: ### Step 1: Rewrite the Function We can rewrite \( \cos^{-1} x \) in terms of \( \sin^{-1} x \): \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] Thus, we can express \( f(x) \) as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)= (1)/(pi)sin^(-1)x+tan^(-1)+(x+1)/(x^(2)+2x+5)

The range of f(x)=(sin pi[x^(2)-1])/(x^(4)+1) is f(x)in:

Knowledge Check

  • The range of f (x) cos "" (pi [x])/(2) is

    A
    `{0,1}`
    B
    `{-1,1}`
    C
    `{-1,0,1}`
    D
    `[-1,1]`
  • If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range of a

    A
    `[-(3)/(4), (1)/(4)]`
    B
    `[-(3)/(4), (3)/(4)]`
    C
    `[-1, 1]`
    D
    `[-1, (3)/(4)]`
  • Similar Questions

    Explore conceptually related problems

    Find the range of the function f(x) =x Si x- (1)/(2) sin^(2) x for xin (0,(pi)/(2))

    find the domain and range of f(x)=sqrt(cos(sin x))+sin^(-1)((1+x^(2))/(2x))

    Consider function f(x) = sin^(-1) (sin x) + cos^(-1) (cos x), x in [0, 2pi] (a) Draw the graph of y = f (x) (b) Find the range of f(x) (c) Find the area bounded by y = f(x) and x-axis

    Draw the graph of f(x) " maximum " {2 sin x, 1 - cos x}, x in (0, pi) . Also find the range of g(x) " min " {2 sin x, 1 - cos x}, x in (0, pi)

    find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

    The range of f(x)=sin^(-1)((x^(2)+1)/(x^(2)+2)) is [0,(pi)/(2)] (b) (0,(pi)/(6))( c) [(pi)/(6),(pi)/(2)](d) none of these