Home
Class 12
MATHS
Find the range of f(x) = (sin^(-1) x)^(2...

Find the range of `f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)`

A

`[(pi^2)/4, (9pi^2)/4 ]`

B

`[(3pi^2)/4, (11pi^2)/4 ]`

C

`[(5pi^2)/4, (13pi^2)/4 ]`

D

`[(7pi^2)/4, (15pi^2)/4 ]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = (\sin^{-1} x)^2 + 2\pi \cos^{-1} x + \pi^2 \), we will follow these steps: ### Step 1: Rewrite the Function We can rewrite \( \cos^{-1} x \) in terms of \( \sin^{-1} x \): \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] Thus, we can express \( f(x) \) as: \[ f(x) = (\sin^{-1} x)^2 + 2\pi \left(\frac{\pi}{2} - \sin^{-1} x\right) + \pi^2 \] ### Step 2: Simplify the Function Substituting the expression for \( \cos^{-1} x \) into \( f(x) \): \[ f(x) = (\sin^{-1} x)^2 + \pi^2 - 2\pi \sin^{-1} x + \pi^2 \] This simplifies to: \[ f(x) = (\sin^{-1} x)^2 - 2\pi \sin^{-1} x + 2\pi^2 \] ### Step 3: Identify the Quadratic Form Notice that the expression can be rewritten in a quadratic form: \[ f(x) = (\sin^{-1} x - \pi)^2 + \pi^2 \] This indicates that \( f(x) \) is a quadratic function in terms of \( \sin^{-1} x \). ### Step 4: Determine the Range of \( \sin^{-1} x \) The function \( \sin^{-1} x \) is defined for \( x \in [-1, 1] \). Therefore, the range of \( \sin^{-1} x \) is: \[ \sin^{-1} x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \] ### Step 5: Find the Minimum and Maximum Values of \( f(x) \) To find the minimum and maximum values of \( f(x) \), we evaluate \( f(x) \) at the endpoints of the interval for \( \sin^{-1} x \). 1. **Minimum at \( \sin^{-1} x = -\frac{\pi}{2} \)**: \[ f\left(-\frac{\pi}{2}\right) = \left(-\frac{\pi}{2} - \pi\right)^2 + \pi^2 = \left(-\frac{3\pi}{2}\right)^2 + \pi^2 = \frac{9\pi^2}{4} + \pi^2 = \frac{13\pi^2}{4} \] 2. **Maximum at \( \sin^{-1} x = \frac{\pi}{2} \)**: \[ f\left(\frac{\pi}{2}\right) = \left(\frac{\pi}{2} - \pi\right)^2 + \pi^2 = \left(-\frac{\pi}{2}\right)^2 + \pi^2 = \frac{\pi^2}{4} + \pi^2 = \frac{5\pi^2}{4} \] ### Step 6: Conclusion on the Range Thus, the range of \( f(x) \) is: \[ \left[\frac{5\pi^2}{4}, \frac{13\pi^2}{4}\right] \]

To find the range of the function \( f(x) = (\sin^{-1} x)^2 + 2\pi \cos^{-1} x + \pi^2 \), we will follow these steps: ### Step 1: Rewrite the Function We can rewrite \( \cos^{-1} x \) in terms of \( \sin^{-1} x \): \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] Thus, we can express \( f(x) \) as: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.2|6 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

The range of f (x) cos "" (pi [x])/(2) is

Find the range of f(x)= (1)/(pi)sin^(-1)x+tan^(-1)+(x+1)/(x^(2)+2x+5)

The range of f(x)=(sin pi[x^(2)-1])/(x^(4)+1) is f(x)in:

Find the range of the function f(x) =x Si x- (1)/(2) sin^(2) x for xin (0,(pi)/(2))

find the domain and range of f(x)=sqrt(cos(sin x))+sin^(-1)((1+x^(2))/(2x))

Consider function f(x) = sin^(-1) (sin x) + cos^(-1) (cos x), x in [0, 2pi] (a) Draw the graph of y = f (x) (b) Find the range of f(x) (c) Find the area bounded by y = f(x) and x-axis

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

The range of f(x)=sin^(-1)((x^(2)+1)/(x^(2)+2)) is [0,(pi)/(2)] (b) (0,(pi)/(6))( c) [(pi)/(6),(pi)/(2)](d) none of these

If (sin^(-1) x)^(2) - (cos^(-1) x)^(2) = a pi^(2) then find the range of a

CENGAGE-INVERSE TRIGONOMETRIC FUNCTIONS-Question Bank
  1. Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

    Text Solution

    |

  2. If alpha and beta are the two zeroes of the equation 3 cos ^-1(...

    Text Solution

    |

  3. If log pi x gt 0 then the absolute value of log 1/pi(sin ^-1 (2 x)/...

    Text Solution

    |

  4. If sin ^-1(sin 4)^-1+cos ^-1(cos 8)+tan ^-1(tan 6)+cot ^-1 .(cot 10)=...

    Text Solution

    |

  5. Total number of ordered pairs (x, y) satisfying |y|=cos x and y=sin...

    Text Solution

    |

  6. Find the number of points x in[-pi/2, (3 pi)/2] satisfying the equ...

    Text Solution

    |

  7. If the equation sin ^-1(x^2+x+1)+cos ^-1(lambda x+1)=pi/2 has exactly ...

    Text Solution

    |

  8. Number of values of x satisfying the equation cos ^-1(x^2-.5 x+6)=...

    Text Solution

    |

  9. Given f(x)=tan ^-1(cot x)+cot ^-1(tan x),(pi/2 lt x lt pi) , then ...

    Text Solution

    |

  10. If all the roots of the equation x^3-3 x=0 satisfy the equation (alpha...

    Text Solution

    |

  11. If the solution set of inequality (cosec^-1 x^2)-2 cosec^-1 x ge pi/6(...

    Text Solution

    |

  12. Find the sum of the values of x satisfying the equation tan ^-1((2 ...

    Text Solution

    |

  13. Number of values of x satisfying the equation cos ((4 pi)/3-cos ^-1...

    Text Solution

    |

  14. If the value of expression sin ^-1(sin 2013^(circ))+cos ^-1(cos.2013^...

    Text Solution

    |

  15. Let f:[0,3 pi] rarr[-pi/2, pi/2] be defined by f(x)=sin ^-1(sin x)...

    Text Solution

    |

  16. function f(x)=(arccot x/2+operatornamearccot x/3)/(arctan x/2+arctan ...

    Text Solution

    |

  17. If m and M are the least and the greatest value of (cos ^-1 x)^2...

    Text Solution

    |

  18. Solution of the equation cot (overset (4) underset (r =1) sum cot ^-1...

    Text Solution

    |

  19. If the equation sin ^-1 x=cosec^-1 x is satisfied for alpha and beta, ...

    Text Solution

    |

  20. Let f(x)=sin ^5 x-cos ^2 x and g(x)=cot ^-1(x^2+x+1) . Number of...

    Text Solution

    |

  21. The value of 3 sin (1/2 arc cos 1/9) +4 cos (1/2 arc cos 1/8) equal t...

    Text Solution

    |