Home
Class 12
MATHS
Find the following values : (a) tan^(1...

Find the following values :
(a) `tan^(1) tan.(13pi)/(5)` (b) `sec^(-1) sec.(13pi)/(3)`
(c) `sin^(-1) sin.(33pi)/(5)` (d) `sin^(-1) (sin 8)`
(e) `tan^(-1) (tan 10)` (f) `sec^(-1) (sec 9)`
(g) `cot^(-1) (cot 6)` (h) `cosec^(-1) (cosec 7)`

Text Solution

Verified by Experts

The correct Answer is:
(a) `-(2pi)/(5)` (b) `(pi)/(3)` (c) `(2pi)/(5)` (d) `3 pi -8` (e) `10 - 3 pi` (f) `9 - 2pi` (g) `6 - pi` (h) `7 - 2pi`

(a) `tan^(-1) tan. (13 pi)/(5) = tan^(-1) tan {3pi + (-(2pi)/(5))}`
`= tan^(-1) tan.(-(2pi)/(5))`
`= -(2pi)/(5)`
(b) `sec^(-1) sec. (13pi)/(3) = sec^(-1) sec.(3pi + (pi)/(3))`
`= sec^(-1) sec. (pi)/(3)`
`= (pi)/(3)`
(c) `sin^(-1) sin.(33 pi)/(5) = sin^(-1) sin. (7 pi - (2pi)/(5))`
`= sin^(-1) sin. (2pi)/(5) = (2pi)/(5)`
(d) `sin^(-1) (sin 8) = sin^(-1) (sin (3pi -8)) = 3 pi -8`
(e) `tan^(-1) (tan 10) = tan^(-1) (tan(10 - 3 pi)) = 10 - 3 pi`
(f) `sec^(-1) (sec 9) = sec^(-1) (sec(9 - 2pi)) = 9 - 2pi`
(g) `cot^(-1) (cot 6) = cot^(-1) (cot(6 - pi)) = 6 - pi`
(h) `cosec^(-1) (cosec7) = cosec^(-1) (cosec(7 - 2 pi)) = 7 - 2pi`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.3|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.4|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE|Exercise Exercise 7.1|12 Videos
  • INTRODUCTION TO VECTORS

    CENGAGE|Exercise JEE Previous Year|20 Videos
  • JEE 2019

    CENGAGE|Exercise Chapter 10|9 Videos

Similar Questions

Explore conceptually related problems

Find the value of : (1) sin^(-1)(sin.(5pi)/(6)) (2) cos^(-1)(cos.(13pi)/(6)) (3) tan^(-1)(tan.(7pi)/(6))

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))

Knowledge Check

  • tan^2(sec^(-1)2)+cot^2(cosec^(-1)3) is

    A
    11
    B
    13
    C
    15
    D
    none
  • Similar Questions

    Explore conceptually related problems

    Find the value of: i) sin ^(-1)(sin (3pi)/5) , ii) cos^(-1)(cos(13pi)/6) , iii) tan^(-1)(tan (7pi)/6) .

    sec^(2) (tan^(-1) 4) + cosec^(2) (cot ^(-1) 3) =?

    sec^(2) ( tan^(-1)2) + cosec^(2) ( cot^(-1)3) =

    sec^(2)(tan^(-1)4)+cosec^(2)(cot^(-1)3) =

    Evaluate each of the following: sin((cot^(-1)4)/(3)) (ii) sin((sec^(-1)(17))/(15)) (iii) sin(csc^(-1)(17)/(8))

    Let y = sin^-1 (sin8) - tan^-1(tan 10) + co^-1 '(cos1 2)-sec^-1 (sec9) + cot^-1(cot6) _ cosec^-1(cosec 7 ). If y simplifies to api + b , then find (a-b).

    sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=