Home
Class 12
MATHS
vec(a) = 2hat(i) - hat(j) + hat(k), vec(...

`vec(a) = 2hat(i) - hat(j) + hat(k), vec(b) = hat(i) - 3hat(j) - 5hat(k)`. Find the vector `vec(c )` such that `vec(a), vec(b) and vec(c)` form the sides of a triangle.

Text Solution

Verified by Experts

The correct Answer is:
`barc= -3bari+2barj+4bark`.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    SRISIRI PUBLICATION|Exercise 3 D (MISCELLANEOUS)|15 Videos
  • PRODUCT OF VECTORS

    SRISIRI PUBLICATION|Exercise SPQ|15 Videos
  • PRODUCT OF VECTORS

    SRISIRI PUBLICATION|Exercise 1 D (LAQ)|13 Videos
  • PRACTICE MODEL PAPER-8

    SRISIRI PUBLICATION|Exercise SECTION-C|7 Videos
  • PROPERTIES OF TRIANGLES

    SRISIRI PUBLICATION|Exercise LAQ ,SAQ,VSAQ (2DHARDQ) (3DMIS.Q)|44 Videos

Similar Questions

Explore conceptually related problems

vec(a)=2vec(i)-vec(j)-vec(j)+vec(k),vec(b)=vec(i)-3vec(j)-5vec(k) . Find the vector C such that vec(a),vec(b) and vec(c) form the sides of a triangle.

If vec(F)= 3hat(i) + 4hat(j) + 5hat(k) and vec(S) = 6hat(i) + 2hat(j) + 5hat(k) , find the work done by the force

Knowledge Check

  • If vec(F) = hat(i) + 2hat(j) + hat(k) and vec(V) = 4hat(i) - hat(j) + 7hat(k) find vec(F).vec(V)

    A
    6W
    B
    9W
    C
    13W
    D
    12W
  • If vec(F)= hat(i) + 2hat(j) + hat(k) and vec(V)= 4hat(i)- hat(j) + 7hat(k) find vec(F).vec(V)

    A
    6W
    B
    9W
    C
    13W
    D
    12W
  • If vec(F) = hat(i) + 2hat(j) + hat(k) and vec(V) = 4hat(i) + hat(j) + 2hat(k) . Component of vec(B) along vec(A) is

    A
    `(sqrt(14))/(38)`
    B
    `(28)/(sqrt(38))`
    C
    `(sqrt(28))/(38)`
    D
    `(14)/(sqrt(38))`
  • Similar Questions

    Explore conceptually related problems

    If vec(F) = 3hat(i) + 4hat(j) + 5hat(k) and vec(S) = 6hat(i) + 2hat(j) + 5hat(k) , find the work done by the force.

    If vec(P)= 2hat(i) + 3hat(j)- 4hat(k) and vec(Q)= 5hat(i) + 2hat(j) + 4hat(k) . Find the angle between the two vectors.

    If vec(A)= 5 hat(i) - 2hat(j) + 3hat(k) and vec(B)= 2hat(i) + hat(j) + 2hat(k) , component of vec(B) along vec(A) is

    The angle between vec(A) = hat(i) = 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k) is

    If vec(A) = 3hat(i) - 4hat(j) and vec(B) = -hat(i) - 4hat(j) , calculate the direction of vec(A) -vec(B) .