Home
Class 12
MATHS
1.3+3.5+5.7+. . .+(2n-1)(2n+1)=(n(4n^(2)...

`1.3+3.5+5.7+. . .+(2n-1)(2n+1)=(n(4n^(2)+6n-1))/(3)`

Text Solution

Verified by Experts

We have,
`P(n) : 1 xx 3 + 3 xx 5 + 5 xx 7 + "….." + (2n-1) xx (2n+1)`
`= (n(4n^(2) + 6n - 1))/(3)`
For `n = 1`,
L.H.S. `= 1 xx 3 = 3`,
R.H.S. `= (1.(4+6-1))/(3) = 3`
Thus, `P(1)` is holds.
Let `P(n)` be true for some `n = k`.
`1 xx 3 + 3 xx 5 + 5 xx 7 + "......"+ (2k-1)(2k+1)+(2k+1)(2k+3)`
`= (k(4k^(2) + 6k - 1))/(3) + (2k + 1)(2k+3)`
`= (k(4k^(2) + 6k - 1) + 3(4k^(2) + 8k + 3))/(3)`
`= (4k^(3) + 18k^(2) + 23k + 9 )/(3)`
`= ((k+1)(4k^(2) + 14 k + 9))/(3)`
`= ((k+1){4(k+1)^(2) + 6(k+1)-1})/(3)`
Thus, `P(k+1)` is true whenever `P(k)` is true.
Hence by the principle of mathematical induction, statement `P(n)` is true for all natural number.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    CENGAGE|Exercise Exercise|9 Videos
  • PERMUTATION AND COMBINATION

    CENGAGE|Exercise Question Bank|19 Videos
  • PROBABILITY

    CENGAGE|Exercise Solved Examples And Exercises|372 Videos

Similar Questions

Explore conceptually related problems

Prove the following by the principle of mathematical induction: 1.3+2.4+3.5++(2n-1)(2n+1)=(n(4n^(2)+6n-1))/(3)

(1^(4))/(1.3)+(2^(4))/(3.5)+(3^(4))/(5.7)+......+(n^(4)) /((2n-1)(2n+1))=(n(4n^(2)+6n+5))/(48)+(n)/(16(2n+1))

Knowledge Check

  • Statement -1: (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+ . . . .+(n^(2))/((2n-1)(2n+1))=(n(n+1))/(2(2n+1)) Statement -2: (1)/(1.3)+(1)/(3.5)+(1)/(5.7)+ . . . .+(1)/((2n-1)(2n+1))=(1)/(2n+1)

    A
    Statement -1 is true, Statement -2 is True, Statement -2 is a correct explanation for Statement for Statement -1.
    B
    Statement -1 is true, Statement -2 is True, Statement -2 is not a correct explanation for Statement for Statement -1.
    C
    Statement -1 is true, Statement -2 is False.
    D
    Statement -1 is False, Statement -2 is True.
  • Similar Questions

    Explore conceptually related problems

    Find lim_(n rarr oo)((1.3.5...(2n-1)}(n+1)^(4)]+[n^(4)(1.3.5...(2n-1)) (2n+1)]

    1.3+2.4+3.5+....+n(n+2)=(n(n+1)(2n+7))/(6)

    (1^(2))/(1.3)+(2^(2))/(3.5)+(3^(2))/(5.7)+.....+(n^(2))/ ((2n-1)(2n+1))=((n)(n+1))/((2(2n+1)))

    1.2.3+2.3.4++n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4)

    The A.M.of the observations 1.3.5,3.5.7,5.7.9,......,(2n-1)(2n+1)(2n+3) is (AA n in N)

    The A.M of the observations 1.3.5,3.5.7,5.7.9,...,(2n-1)(2n+1)(2n+3) is

    (1^(3)+2^(3)+...+n^(3))/(1+3+5+...+(2n-1))=((n+1)^( 2))/(4)