Home
Class 12
MATHS
y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(...

`y=tan^(-1)""(3x-x^(3))/(2x^(2)-1),-(1)/(sqrt(3))ltxlt(1)/(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will differentiate the function \( y = \tan^{-1} \left( \frac{3x - x^3}{2x^2 - 1} \right) \). ### Step 1: Rewrite the function Let: \[ y = \tan^{-1} \left( \frac{3x - x^3}{2x^2 - 1} \right) \] ### Step 2: Use the substitution We will use the substitution \( x = \tan(\theta) \). Therefore, we have: \[ \frac{3x - x^3}{2x^2 - 1} = \frac{3\tan(\theta) - \tan^3(\theta)}{2\tan^2(\theta) - 1} \] ### Step 3: Recognize the tangent triple angle formula The expression \( \frac{3\tan(\theta) - \tan^3(\theta)}{2\tan^2(\theta) - 1} \) can be simplified using the tangent triple angle formula: \[ \tan(3\theta) = \frac{3\tan(\theta) - \tan^3(\theta)}{1 - 3\tan^2(\theta)} \] Thus, we can rewrite: \[ y = \tan^{-1}(\tan(3\theta)) \] ### Step 4: Simplify using the properties of inverse tangent Since \( y = \tan^{-1}(\tan(3\theta)) \), we have: \[ y = 3\theta \] This is valid as long as \( 3\theta \) is within the range of the inverse tangent function. ### Step 5: Substitute back for \( \theta \) Recall that \( x = \tan(\theta) \), so: \[ \theta = \tan^{-1}(x) \] Thus: \[ y = 3\tan^{-1}(x) \] ### Step 6: Differentiate with respect to \( x \) Now, we differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = 3 \cdot \frac{d}{dx}(\tan^{-1}(x)) \] We know that: \[ \frac{d}{dx}(\tan^{-1}(x)) = \frac{1}{1 + x^2} \] So: \[ \frac{dy}{dx} = 3 \cdot \frac{1}{1 + x^2} \] ### Final Answer Thus, the derivative is: \[ \frac{dy}{dx} = \frac{3}{1 + x^2} \]

To solve the problem step by step, we will differentiate the function \( y = \tan^{-1} \left( \frac{3x - x^3}{2x^2 - 1} \right) \). ### Step 1: Rewrite the function Let: \[ y = \tan^{-1} \left( \frac{3x - x^3}{2x^2 - 1} \right) \] ### Step 2: Use the substitution We will use the substitution \( x = \tan(\theta) \). Therefore, we have: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.3|8 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.4|10 Videos
  • DIFFERENTIATION

    CENGAGE|Exercise Exercise 3.1|7 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE|Exercise Question Bank|25 Videos
  • DOT PRODUCT

    CENGAGE|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find quad (dy)/(dx) in the following: y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-(1)/(sqrt(3))

If y=tan^(-1)((3x-x^(3))/(1-3x^(2))),(1)/(sqrt(3))

Find dy/dx in the following : y=tan^(-1)((3x-x^(3))/(1-3x^(2))),-1/sqrt3ltxlt1/sqrt3

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if -(1)/(sqrt(3)) (1)/(sqrt(3))(3)*xlt1/sqrt(3)

y = tan ^ (- 1) [(3x-x ^ (3)) / (1-3x ^ (2))], - (1) / (sqrt (3))

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3)) w.r.t tan ^(-1)((x)/(sqrt(1-x^(2))))

" (vii) f(x)=3x^(2)-1;x=(1)/(sqrt(3)),(2)/(sqrt(3))

If y = tan ^ (- 1) ((3x) / (1-2x ^ (2))), - (1) / (sqrt (2))

int(1)/(sqrt(3x+2)+sqrt(3x+1))