Home
Class 12
MATHS
Let a,b gt 0 and vecalpha=(veci/a+(4hatj...

Let `a,b gt 0` and `vecalpha=(veci/a+(4hatj)/b+bhatk)` and `vecbeta = bhati+ahatj+1/bhatk`, then the maximum value of `10/(5 + vecalpha.vecbeta)` is

A

1

B

2

C

4

D

8

Text Solution

Verified by Experts

The correct Answer is:
A

`vecalpha.vecbeta = b/a+(4a)/(b)+1ge5`
So, `(10/(5 + vecalpha.vecbeta))_("max")=1`.
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE|Exercise Numerical Value Type|3 Videos
  • ELLIPSE

    CENGAGE|Exercise Multiple Correct Answers Type|6 Videos

Similar Questions

Explore conceptually related problems

Let a,bgt0 and alpha=(hati)/(a)+(4hatj)/(b)+bhatk and beta=bhati+ahattj+(1)/(b)hatk , then the maximum value of (10)/(5+alpha*beta) is

Let vecalpha=(1)/(a)hati+(4)/(b)hatj+bhatk and vecbeta=bhati+ahatj+(1)/(b)hatk(Aaa, b gt 0) , then the maximum value of (12)/(6+vecalpha.vecbeta)) is

* Let a,b>0 and vec alpha=(hat i)/(a)+4(hat j)/(b)+bhat k and beta=bhat i+ahat j+(hat k)/(b) then the maximum value of (30)/(5+alpha*beta)

If a,bgt0 then the maximum value of (a^(3)b)/((a+b)^(4)), is

If ab gt 0 , then the minimum value of (a+b)((1)/(a)+(1)/(b)) is

Let a,b and c be real numbers such that a+2b+c=4. Find the maximum value of (ab+bc+ca)

If A gt 0 ,B gt 0 and A+B= pi/3 ,then the maximum value of tan A tan B , is