Home
Class 11
MATHS
Let overset(to)(a) =a(1) hat(i) + a(2)...

Let ` overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(a) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(a) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k)` be three non- zero vectors such that `overset(to)(c )` is a unit vectors perpendicular to both the vectors `overset(to)(c )` and `overset(to)(b)`. If the angle between `overset(to)(a) " and " overset(to)(n)` is `(pi)/(6)` then
`|{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}|` is equal to

A

0

B

1

C

`1/4(a_(1)^(2)+a_(2)^(2)+a_(2)^(2))(b_(1)^(2) +b_(2)^(2)+b_(2)^(2))`

D

`3/4(a_(1)^(2)+a_(2)^(2)+a_(2)^(2))(b_(1)^(2) +b_(2)^(2)+b_(2)^(2)) (c_(1)^(2) + c_(2)^(2)+c_(2)^(2))`

Text Solution

Verified by Experts

The correct Answer is:
c

We are given that `veca = a_(1)hati+a_(2)hatj +a_(3)hatk`
`vecb = b_(1)hati +b_(2)hatj +b_(3)hatk`
`vecc =c_(1)hati +c_(2)hatj +c_(3)hatk`
`"then"|{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|^(2)=[veca vecbvecc]^(2)`
` (veca xx vecb.vecc)^(2)`
`(|veca xx vecb|.1cos)^(@2)`
(since `vecc` is `bot "to" veca and vecb, vecc "is " bot "to" vecaxx vecb)`
`(|veca xx vecb|)^(2)`
`(|veca||vecb|.sin""pi/6)^(2)`
`(1/2sqrt(a_(1)^(2)+a_(2)^(2)+a_(3)^(2))sqrt(b_(1)^(2)+b_(2)^(2)+b_(3)^(2)))^(2)`
`1/4(a_(1)^(2)+a_(2)^(2)+a_(2)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE|Exercise JEE Previous Year (Single Question)|28 Videos
  • CONIC SECTIONS

    CENGAGE|Exercise Solved Examples And Exercises|1316 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE|Exercise Solved Examples And Exercises|320 Videos

Similar Questions

Explore conceptually related problems

If overset(to)(A) = 2hat(i) + hat(k) , overset(to)(B) = hat(i) + hat(j) +hat(k) " and " overset(to) (C ) = 4hat(i) - 3hat(j) +7hat(k) Determine a vector overset(to)(R ) " satisfying " overset(to)(R ) xx overset(to)( B) = overset(to)( C ) xx overset(to)( B) " and " overset(to)(R ) " ." overset(to)(A) = 0

Let vec a = a_1 hat i + a_2 hat j+ a_3 hat k;vec b = b_1 hat i+ b_2 hat j+ b_3 hat k ; vec c= c_1hat i + c_2 hat j+ c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a & vec b. If the angle between vec a and vec b is pi/6 , then |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|^2=

Knowledge Check

  • Let vec(a)=a_(1)hat(i)+a_(2)hat(j)+a_(3)hat(k),vec(b)=b_(1)hat(i)+b_(2)hat(j)+b_(3)hat(k)andvec(c)=c_(1)hat(i)+c_(2)hat(j)+c_(3)hat(k) be three non-zero vectors such that vec(c) is a unit vector perpendicular to both vec(a)andvec(b). If the angle between vec(a)andvec(b)" is "(pi)/(6), then {:""|(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))|"":}^(2)" is equal to"

    A
    0
    B
    1
    C
    `(1)/(4)(a_(1)^(2)+a_(2)^(2)+a_(3)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))`
    D
    `(3)/(4)(a_(1)^(2)+a_(2)^(2)+a_(3)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))(c_(1)^(2)+c_(2)^(2)+c_(3)^(2))`
  • If overset(to)(a) =hat(i) - hat(k) , overset(to)(b) = x hat(i) + hat(j) + (1-x) hat(k) and overset(c ) =y hat(i) +x hat(j) + (1+x-y) hat(k) . "Then " [overset(to)(a) , overset(to)(b) , overset(to)( c) ] depends on

    A
    only x
    B
    only y
    C
    neither x nor y
    D
    both x and y
  • If overset(to)(a) = (hat(i) + hat(j) + hat(k)) , overset(to)(a) , overset(to)(b) , overset(to)(c ) =1 " and " overset(to)(a) xx overset(to)(b) = hat(j) - hat(k), " then " overset(to)(b) is equal to

    A
    `hat(i) - hat(j) + hat(k)`
    B
    `2hat(j) - hat(k)`
    C
    `hat(i)`
    D
    `2hat(i)`
  • Similar Questions

    Explore conceptually related problems

    Let overset(to)(a) = hat(i) - hat(j) , overset(to)(b) - hat(k) , overset(to)( c) - hat(k) - hat(i) . If overset(to)(d) is a unit vector such that overset(to)(a) , Overset(to)(d) =0= [ overset(to)(b) overset(to)(c ) overset(to)d)] then overset(to)(d) equals

    Let overset(to)(a) =2hat(i) +hat(j) + hat(k), overset(to)(b) =hat(i) + 2hat(j) -hat(k) and a unit vector overset(to)(c ) be coplanar. If overset(to)(c ) is perpendicular to overset(to)(a) " then " overset(to)(c ) is equal to

    Let overset(to)(a) =2hat(i) + hat(j) -2hat(k) " and " overset(to)(b) = hat(i) + hat(j) . " If " overset(to)(c ) is a vectors such that |overset(to)(a)"." overset(to)(c ) = |overset(to)( c)| , |overset(to)(c )- overset(to)(a)|= 2sqrt(2) and the angle between (overset(to)(a) xx overset(to)(b)) " and " overset(to)( c ) " is " 30^(@), " then "|(overset(to)(a) xx overset(to)(b)) xx overset(to)( c )| is equal to

    If vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 2 hat(i) + 3 hat( j) + 2 hat(k) and vec(c) = hat(i) - m hat(j) + n hat(k) are three coplanar vectors and |vec(c)|=sqrt(6) , then which one of the following is correct?

    Let overset(to)(a) =hat(i)+2hat(j)+hat(k),overset(to)(b) =hat(i)-hat(j)+hat(k),overset(to)(C )=hat(i)+hat(j) -hat(k). A vector coplanar to overset(to)(a) and overset(to)(b) has a projections along overset(to)(c ) of magnitude (1)/(sqrt(3)) then the vector is