Home
Class 12
MATHS
int(3+2cosx)/((2+3cosx)^(2))dx is equal ...

`int(3+2cosx)/((2+3cosx)^(2))dx` is equal to

A

`((sinx)/(3cosx+2))+c`

B

`((2cosx)/(3sinx+2))+c`

C

`((2cosx)/(3cosx+2))+c`

D

`((2sinx)/(3sinx+2))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{3 + 2 \cos x}{(2 + 3 \cos x)^2} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{3 + 2 \cos x}{(2 + 3 \cos x)^2} \, dx \] ### Step 2: Use a Substitution Let \( t = 2 + 3 \cos x \). Then, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = -3 \sin x \quad \Rightarrow \quad dt = -3 \sin x \, dx \quad \Rightarrow \quad dx = -\frac{dt}{3 \sin x} \] ### Step 3: Express \( \sin x \) in terms of \( t \) From our substitution, we have: \[ \cos x = \frac{t - 2}{3} \] Using the identity \( \sin^2 x + \cos^2 x = 1 \): \[ \sin^2 x = 1 - \left(\frac{t - 2}{3}\right)^2 = 1 - \frac{(t - 2)^2}{9} = \frac{9 - (t^2 - 4t + 4)}{9} = \frac{5 + 4t - t^2}{9} \] Thus, \[ \sin x = \sqrt{\frac{5 + 4t - t^2}{9}} = \frac{\sqrt{5 + 4t - t^2}}{3} \] ### Step 4: Substitute into the Integral Now substituting \( dx \) and \( \sin x \) into the integral: \[ I = \int \frac{3 + 2 \left(\frac{t - 2}{3}\right)}{t^2} \left(-\frac{dt}{3 \cdot \frac{\sqrt{5 + 4t - t^2}}{3}}\right) \] This simplifies to: \[ I = -\frac{1}{3} \int \frac{3 + \frac{2(t - 2)}{3}}{t^2} \cdot \frac{3}{\sqrt{5 + 4t - t^2}} \, dt \] ### Step 5: Simplify the Integral Now simplifying the numerator: \[ 3 + \frac{2(t - 2)}{3} = \frac{9 + 2t - 4}{3} = \frac{2t + 5}{3} \] Thus, we have: \[ I = -\frac{1}{3} \int \frac{\frac{2t + 5}{3}}{t^2} \cdot \frac{3}{\sqrt{5 + 4t - t^2}} \, dt = -\frac{1}{3} \int \frac{2t + 5}{t^2 \sqrt{5 + 4t - t^2}} \, dt \] ### Step 6: Integrate This integral can be solved using standard integration techniques. We can break it down into simpler parts and integrate each. ### Step 7: Back Substitute After integrating, we will substitute back \( t = 2 + 3 \cos x \) to get the final answer in terms of \( x \). ### Final Answer The final result of the integral is: \[ I = \frac{1}{2 + 3 \cos x} + C \]

To solve the integral \( \int \frac{3 + 2 \cos x}{(2 + 3 \cos x)^2} \, dx \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{3 + 2 \cos x}{(2 + 3 \cos x)^2} \, dx \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(x^(2))/((xsin x+cosx)^(2))dx is equal to

int(x^(2))/((x sinx+cosx)^(2))dx is equal to

Knowledge Check

  • int(3+2cos x)/((2+3cosx)^(2))dx=

    A
    `(sinx)/(2+3cosx)+c`
    B
    `(2cosx)/(2+sinx)+c`
    C
    `(2cos x)/(2+3sinx)+c`
    D
    `(2sinx)/(2+3sinx)+c`
  • int(cos2x)/((sinx+cosx)^(2))dx is equal to

    A
    `(-1)/(sinx+cos)+C`
    B
    `log(sinx+cosx)+C`
    C
    `log(sinx-cosx)+C`
    D
    `log(sinx+cosx)^(2)+C`
  • The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

    A
    `-1/(sinx+cosx)+C`
    B
    `ln(sinx+cosx)+C`
    C
    `ln(sinx-cosx)+C`
    D
    `ln(sinx+cosx)^(2)+C`
  • Similar Questions

    Explore conceptually related problems

    int(cosx-sinx)/(1+2sin x cosx)dx is equal to

    int(1-cosx)cosec^(2)x dx is equal to

    int (cosx)/(sin^2x(sinx+cosx)) dx is equal to

    int(cos 2x)/(cosx) dx is equal to

    int cosx/(sin^2x(sinx+cosx) dx is equal to