Home
Class 12
MATHS
If f(x)=ax^(2)+bx+c and f(-1) ge -4, f(1...

If `f(x)=ax^(2)+bx+c` and `f(-1) ge -4`, `f(1) le 0` and `f(3) ge 5`, then the least value of `a` is

A

`1//4`

B

`1//8`

C

`1//3`

D

`-1//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions for the quadratic function \( f(x) = ax^2 + bx + c \). ### Step-by-Step Solution: 1. **Evaluate \( f(-1) \)**: \[ f(-1) = a(-1)^2 + b(-1) + c = a - b + c \] Given that \( f(-1) \geq -4 \): \[ a - b + c \geq -4 \quad \text{(1)} \] 2. **Evaluate \( f(1) \)**: \[ f(1) = a(1)^2 + b(1) + c = a + b + c \] Given that \( f(1) \leq 0 \): \[ a + b + c \leq 0 \quad \text{(2)} \] 3. **Evaluate \( f(3) \)**: \[ f(3) = a(3)^2 + b(3) + c = 9a + 3b + c \] Given that \( f(3) \geq 5 \): \[ 9a + 3b + c \geq 5 \quad \text{(3)} \] 4. **Set up the inequalities**: We now have three inequalities: - From (1): \( a - b + c \geq -4 \) - From (2): \( a + b + c \leq 0 \) - From (3): \( 9a + 3b + c \geq 5 \) 5. **Express \( c \) in terms of \( a \) and \( b \)**: From inequality (2): \[ c \leq -a - b \quad \text{(4)} \] Substitute (4) into (1): \[ a - b - a - b \geq -4 \implies -2b \geq -4 \implies b \leq 2 \quad \text{(5)} \] 6. **Substitute \( c \) into (3)**: Substitute (4) into (3): \[ 9a + 3b - a - b \geq 5 \implies 8a + 2b \geq 5 \] Rearranging gives: \[ 4a + b \geq \frac{5}{2} \quad \text{(6)} \] 7. **Combine inequalities (5) and (6)**: We have: - \( b \leq 2 \) - \( 4a + b \geq \frac{5}{2} \) Substitute \( b = 2 \) into (6): \[ 4a + 2 \geq \frac{5}{2} \implies 4a \geq \frac{5}{2} - 2 \implies 4a \geq \frac{1}{2} \implies a \geq \frac{1}{8} \] 8. **Conclusion**: The least value of \( a \) that satisfies all the inequalities is: \[ a = \frac{1}{8} \] ### Final Answer: The least value of \( a \) is \( \frac{1}{8} \).

To solve the problem, we need to analyze the given conditions for the quadratic function \( f(x) = ax^2 + bx + c \). ### Step-by-Step Solution: 1. **Evaluate \( f(-1) \)**: \[ f(-1) = a(-1)^2 + b(-1) + c = a - b + c \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Question Bank|25 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Numerical) & JEE Previous Year|11 Videos

Similar Questions

Explore conceptually related problems

If f(x) = ax^2 + bx + c and f(0) = 5 , f(1) = 7 , and f(-1) = 3 then find the value of 3a+5b-c .

If f(x)=ax^(4)-bx^(2)+x+5 and f(-3)=2, then f(3) is

Knowledge Check

  • If f(x) = ax^(2) + bx + c find f^(1) (1) .

    A
    `a+2b`
    B
    `2a -b`
    C
    `a-2b`
    D
    `2a +b`
  • If f(x)=ax^(2)+bx+c, f(-1) gt (1)/(2), f(1) lt -1 and f(-3)lt -(1)/(2) , then

    A
    `a=0`
    B
    `alt0`
    C
    `agt 0`
    D
    Sign of a can not be determined
  • Let f(x) =ax^(2) + bx + c and f(-1) lt 1, f(1) gt -1, f(3) lt -4 and a ne 0 , then

    A
    `a gt 0`
    B
    `a lt 0`
    C
    sign of a cannot be determined
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    Let f(x)=ax^(2)+bx+c, if f(-1) -1,f(3)<-4 and a!=0 then

    If f(x) = ax^(2) + bx + c is such that |f(0)| le 1, |f(1)| le 1 and |f(-1)| le 1 , prove that |f(x)| le 5//4, AA x in [-1, 1]

    If f(x) = ax^(2) + bx + c such that f(-1), f(0) and f(1) are in A.P., then which of the following is correct?

    If f (x) =ax ^(2) + bx + 2 and f (1) =3, f (4) =42, then a and b respectively are

    If f(x)=ax^2+bx+2 , where f(-1)=7 and f(1)=5, then: f(a,b)-=