Home
Class 12
MATHS
int e^(x)((x^(2)+1))/((x+1)^(2))dx is eq...

`int e^(x)((x^(2)+1))/((x+1)^(2))dx` is equal to

A

`((x-1)/(x+1))e^(x)+c`

B

`e^(x)((x+1)/(x-1))+c`

C

`e^(x)(x+1)(x-1)+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \frac{x^2 + 1}{(x + 1)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the expression \( \frac{x^2 + 1}{(x + 1)^2} \). We can rewrite \( x^2 + 1 \) as \( (x^2 - 1) + 2 \) to facilitate the integration. Thus, we have: \[ \frac{x^2 + 1}{(x + 1)^2} = \frac{(x^2 - 1) + 2}{(x + 1)^2} = \frac{x^2 - 1}{(x + 1)^2} + \frac{2}{(x + 1)^2} \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ \int e^x \frac{x^2 + 1}{(x + 1)^2} \, dx = \int e^x \frac{x^2 - 1}{(x + 1)^2} \, dx + \int e^x \frac{2}{(x + 1)^2} \, dx \] ### Step 3: Simplify the first integral The first integral can be simplified using the identity \( x^2 - 1 = (x + 1)(x - 1) \): \[ \int e^x \frac{x^2 - 1}{(x + 1)^2} \, dx = \int e^x \frac{(x + 1)(x - 1)}{(x + 1)^2} \, dx = \int e^x \frac{x - 1}{x + 1} \, dx \] ### Step 4: Use integration by parts Now we can apply the integration by parts formula. Let \( u = \frac{x - 1}{x + 1} \) and \( dv = e^x \, dx \). Then we need to find \( du \): \[ u = \frac{x - 1}{x + 1} \implies du = \frac{(x + 1)(1) - (x - 1)(1)}{(x + 1)^2} \, dx = \frac{2}{(x + 1)^2} \, dx \] Now we compute \( v \): \[ v = e^x \] ### Step 5: Apply integration by parts Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] So we have: \[ \int e^x \frac{x - 1}{x + 1} \, dx = e^x \frac{x - 1}{x + 1} - \int e^x \frac{2}{(x + 1)^2} \, dx \] ### Step 6: Combine the integrals Now we can combine the integrals: \[ \int e^x \frac{x^2 + 1}{(x + 1)^2} \, dx = e^x \frac{x - 1}{x + 1} - \int e^x \frac{2}{(x + 1)^2} \, dx + \int e^x \frac{2}{(x + 1)^2} \, dx \] The two \( \int e^x \frac{2}{(x + 1)^2} \, dx \) terms cancel out, leaving us with: \[ = e^x \frac{x - 1}{x + 1} + C \] ### Final Result Thus, the final result of the integral is: \[ \int e^x \frac{x^2 + 1}{(x + 1)^2} \, dx = e^x \frac{x - 1}{x + 1} + C \]

To solve the integral \( \int e^x \frac{x^2 + 1}{(x + 1)^2} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the expression \( \frac{x^2 + 1}{(x + 1)^2} \). We can rewrite \( x^2 + 1 \) as \( (x^2 - 1) + 2 \) to facilitate the integration. Thus, we have: \[ \frac{x^2 + 1}{(x + 1)^2} = \frac{(x^2 - 1) + 2}{(x + 1)^2} = \frac{x^2 - 1}{(x + 1)^2} + \frac{2}{(x + 1)^2} \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Multiple)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise (Comprehension)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE|Exercise Exercise 7.9|15 Videos
  • HYPERBOLA

    CENGAGE|Exercise JEE Advanced Previous Year|14 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int e^(x) ((1+ x^(2)))/((1+x)^(2))dx

int e^(x)((x-2)/((x-1)^(2)))dx is equal to (i) (e^(x))/(x-1)+C (ii) (e^(x))/((x-1)^(2))+C( iii) (2e^(x))/((x-1)^(2))+C( iv )(e^(x)-1)/(x-1)+C

Knowledge Check

  • int(x^(2)+1)/(x(x^(2)-1))dx is equal to

    A
    `log((x^(2)-1)/(x))+c`
    B
    `-log((x^(2)-1)/x)+c`
    C
    `log(x/(x^(2)+1))+c`
    D
    `-log(x/(x^(2)+1))+c`
  • int(x e^(x))/((1+x)^(2)) dx is equal to

    A
    `(e^(x))/(x+1)+C`
    B
    `e^(x)(x+1)+C`
    C
    `-(e^(x))/((x+1)^(2))+C`
    D
    `(e^(x))/(1+x^(2))+C`
  • int(x^2e^(x))/((x+2)^(2))dx is equal to

    A
    `((x-1)/(x+2))e^(x)+c`
    B
    `((x-2)/(x+2))e^(x-1)+c`
    C
    `((x-2)/(x+2))e^(x)+c`
    D
    none of these
  • Similar Questions

    Explore conceptually related problems

    int(e^(x)(1-x)^(2))/((1+x)^(2))dx

    int((x^(2)+1)e^(x))/((x+1)^(2))dx

    int((x^(2)+1)e^(x))/((x+1)^(2))dx

    int((x^(2)+1)e^(x))/((x+1)^(2))dx

    (2) int(1)/(e^(x)+e^(-x))dx is equal to