Home
Class 11
PHYSICS
Solve for x: (i) 10x^(2)-27x+5=0 (ii) p...

Solve for x: (i) `10x^(2)-27x+5=0` (ii) `pqx^(2)-(p^(2)+q^(2))x+pq=0`

Text Solution

Verified by Experts

The correct Answer is:
(i) `(5)/(2), (1)/(5)`
(ii) `(p)/(q), (q)/(p)`

(i) `10 x^(2) - 27x +5=0` ltBrgt `x= (-bpm sqrt(b^(2) - 4ac))/(2a) = (27 pm sqrt((-27)^(2) - 4(10)(5)))/(20)`
`= (27pm 23)/(20 ) rArr x =(5)/(2), (1)/(5)`
(ii) `(pq)x^(2) - (p^(2) + q^(2))x+(pq)=0`
`x= ((p^(2) + q^(2)) pm sqrt((p^(2)+ q^(2))^(2) - 4(pq)(pq)))/( 2pq)`
`= ((p^(2) + q^(2)) pm (p^(2) - q^(2)))/( 2pq) rArr x = (p)/(q), (q)/(p)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 7|2 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 8|2 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 5|1 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

Solve : (i) |x^(2)-2x|le x , (ii) (x^(2)-9)(|x|-2)le0

Solve the Equation: (i) x^(2)+3x+5=0 (ii) x^(2)-x+2=0 .

Knowledge Check

  • (i) x^(2) + 6x + 5 = 0 (ii) y^(2) -10y+21 = 0

    A
    x = y or no relation can be established between x and y.
    B
    ` x le y`
    C
    ` x ge y`
    D
    ` x lt y`
  • (i) x^(2) -10x+21 = 0 (ii) y^(2) -11y+18 = 0

    A
    ` x lt y`
    B
    x =y or no relation can be established between x and y.
    C
    ` x ge y`
    D
    ` x gt y `
  • Similar Questions

    Explore conceptually related problems

    Solve: (i) 27x^(2)-10x+1=0 . (ii) 21x^(2)-28x+10=0 .

    Solve: (i) 3x^(2)-4x+(20)/(3)=0 . (ii) x^(2)-2x+(2)/(3)=0 .

    Solve using formula : (i) x^(2) - 4x-5=0 (ii) x^(2) - 7x - 3=0 (iii) With the help of flow chart given below solve the equation x^(2) + 2sqrt(5) x + 5 = 0 using the formula :

    a^(2)p^(2)x^(2)-q^(2)=0,x=

    Solve log_(10)(x^(2)-2x-2) le 0 .

    If alpha,beta are the roots of the equation px^(2)-qx+r=0, then the equation whose roots are alpha^(2)+(r)/(p) and beta^(2)+(r)/(p) is (i) p^(3)x^(2)+pq^(2)x+r=0 (ii) px^(2)-qx+r=0 (iii) p^(3)x^(2)-pq^(2)x+q^(2)r=0 (iv) px^(2)+qx-r=0