Home
Class 11
PHYSICS
Find 1-(1)/(2) + (1)/(4) + (1)/(8) + (1)...

Find `1-(1)/(2) + (1)/(4) + (1)/(8) + (1)/(16) - (1)/(32) + .......... oo`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = 1 - \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} - \frac{1}{32} + \ldots \), we can break it down step by step. ### Step 1: Identify the series components The series can be rewritten as: \[ S = 1 + \left(-\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} - \frac{1}{32}\right) \] ### Step 2: Group the terms We can group the positive and negative terms: \[ S = 1 + \left(-\frac{1}{2} + \left(\frac{1}{4} + \frac{1}{8} + \frac{1}{16}\right) - \frac{1}{32}\right) \] ### Step 3: Identify the geometric series The positive terms \( \frac{1}{4} + \frac{1}{8} + \frac{1}{16} \) can be recognized as a geometric series: - First term \( a = \frac{1}{4} \) - Common ratio \( r = \frac{1}{2} \) ### Step 4: Sum the geometric series The sum of an infinite geometric series is given by the formula: \[ S = \frac{a}{1 - r} \] For our series: \[ S = \frac{\frac{1}{4}}{1 - \frac{1}{2}} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{4} \cdot 2 = \frac{1}{2} \] ### Step 5: Combine the results Now, substituting back into our expression for \( S \): \[ S = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{32} \] ### Step 6: Simplify the expression Now, we can simplify: \[ S = 1 - \frac{1}{32} \] \[ S = \frac{32}{32} - \frac{1}{32} = \frac{31}{32} \] ### Final Result Thus, the sum of the series is: \[ S = \frac{31}{32} \] ---

To solve the series \( S = 1 - \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} - \frac{1}{32} + \ldots \), we can break it down step by step. ### Step 1: Identify the series components The series can be rewritten as: \[ S = 1 + \left(-\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} - \frac{1}{32}\right) \] ### Step 2: Group the terms We can group the positive and negative terms: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 9|4 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 10|3 Videos
  • BASIC MATHEMATICS USED IN PHYSICS &VECTORS

    ALLEN|Exercise BEGINNER S BOX 7|2 Videos
  • CENTRE OF MASS

    ALLEN|Exercise EXERCISE-V B|19 Videos

Similar Questions

Explore conceptually related problems

(1+ (1) / (2)) (1+ (1) / (4)) (1+ (1) / (16)) (1+ (1) / (256)) ...... ... oo

(1)/(2)+(3)/(4)+(9)/(8)+(27)/(16)+... oo

Knowledge Check

  • (1)/(2) + (1)/(4) + (1)/(8) +(1)/(16) + …" to" oo is

    A
    `(1)/(2)`
    B
    1
    C
    2
    D
    3
  • 2^(1/4). 4^(1/16). 8^(1/48) .........oo =

    A
    `sqrt2`
    B
    2
    C
    `2^(1/4)`
    D
    1
  • The sum of the series 1+ (1)/(4) + (1)/(16) + (1)/(64) + ...........oo is

    A
    `(8)/(7)`
    B
    `(6)/(5)`
    C
    `(5)/(4)`
    D
    `(4)/(3)`
  • Similar Questions

    Explore conceptually related problems

    (1)/(2) + (3)/(2) . (1)/(4) + (5)/(3).(1)/(8) + (7)/(4).(1)/(16) + ...= .........

    Find the value of (1)/(2)-(1)/(4)+(1)/(8)-(1)/(16)+.........oo A) (2)/(3) B) (1)/(3) C) 3 D) -(2)/(3)

    1+ (1) / (4) + (1) / (4) (3) / (8) + (1) / (4) (3) / (8) (5) / (12) + ... . + oo

    Prove that: 2^((1)/(4)).4^((1)/(8)),8^((1)/(16))*16^((1)/(32)).........oo=2

    sin ^ (2) A cos ^ (4) A = (1) / (16) + (1) / (32) cos2A- (1) / (16) cos4A- (1) / (32) cos6A