Home
Class 7
MATHS
(a^m)/(a^n)=a^(m//n)(a ne 0)...

`(a^m)/(a^n)=a^(m//n)(a ne 0)`

Text Solution

Verified by Experts

The correct Answer is:
False

NA
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Short answer type questions|20 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Essay Type quesitons|15 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Test -2|12 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Test-2|12 Videos
  • MENSURATION

    PEARSON IIT JEE FOUNDATION|Exercise ASSESSMENT TESTS (Test - 1) |23 Videos

Similar Questions

Explore conceptually related problems

For any non-zero integers 'a' and 'b" and whole numbers m and n. - a^(m) xx a^(n) = a^(m+n) a^(m) =a^(n), a gt 0 rArr m=n a^(m) + a^(n)=a^(m-n) If (2/9)^(3) xx (2/9)^(6) =(2/9)^(2m-1) , then m equals

For any non-zero integers 'a' and 'b" and whole numbers m and n. a^(m) xx a^(n) = a^(m+n) a^(m) =a^(n), a gt 0 rArr m=n a^(m) ÷ a^(n)=a^(m-n) The value of (6^(12) xx 15^(16))/3^(11) is:

Knowledge Check

  • The following are the step involved proving that a^(m)xxa^(n)=a^(m+n) , where a ne 0,a ne 1" and "a ne -1 . Arrange them in sequential order. (A) a^(m)xxa^(n)= (a xx a xx"......"m" times ")xx(axxaxx"...."n" times ") (B) a^(m)xxa^(n)=a^(m+n) (C ) a^(m) =axxaxx"….."m" times " , a^(n)=axxaxx"...."n" times " (D) a^(m) xxa^(n) =axxaxx"...."(m+n) times

    A
    CABD
    B
    ACDB
    C
    ACBD
    D
    CADB
  • If (a^(m))^(n)=a^(m^(n)) , then express 'm' in the terms of n is (agt0, ane0, mgt1, ngt1)

    A
    `n^((1/(n-1)))`
    B
    `n^((1/(n+1)))`
    C
    `n^((1/n))`
    D
    None
  • If a^m .a^n = a^(mn) , then m(n - 2) + n(m- 2) is :

    A
    0
    B
    1
    C
    `-1`
    D
    `1/2`
  • Similar Questions

    Explore conceptually related problems

    For any non-zero integers 'a' and 'b" and whole numbers m and n. a^(m) xx a^(n) = a^(m+n) a^(m) =a^(n), a gt 0 rArr m=n a^(m) ÷ a^(n)=a^(m-n) 2^(3) + 2^(3) + 2^(3) +2^(3) is equal to:

    If (a^(m))^(n)=a^(m^(n)), then the value of ' 'm' in terms of 'n' is

    lim_(x rarr a)(x^(m)-a^(m))/(x^(n)-a^(n))=((m)/(n))a^(m-n) if m>n

    if the straight line x cos alpha+y sin alpha=p touches the curve x^(m)y^(n)=a^(m+n) prove that p^(m+n)m^(m)n^(n)=(m+n)^(m+n)a^(m+n)sin^(n)alpha cos^(m)alpha

    Consider the following statements: (A) a^0 =1 , a ne 0 (R) a^m + a^n = a^(m - n) , m , n being integers, Of these statements :