Home
Class 7
MATHS
If (2x^2-y^2)^4=256 and (x^2+y^2)^5=243,...

If `(2x^2-y^2)^4=256 and (x^2+y^2)^5=243`, then find `x^4-y^4`
The following steps are involved in solving the above problem. Arragne then in sequential order.
(A) `(x^2-y^2)^4=256=4^4 and (x^2+y^2)^5=3^5`
(B) `x^4-y^4=12`
(C) `(x^2-y^2)(x^2+y^2)=4xx3`
(D) `x^2-y^2=4 and x^2+y^2=3`

A

ADCD

B

ABCD

C

ADBC

D

ACDB

Text Solution

Verified by Experts

The correct Answer is:
A

(A),(D),(C) and (B) is the required sequentail order. Hence the correct option is (a).
Promotional Banner

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Assessment test Test -2|1 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Test -2|12 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Level -3|20 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise Test-2|12 Videos
  • MENSURATION

    PEARSON IIT JEE FOUNDATION|Exercise ASSESSMENT TESTS (Test - 1) |23 Videos

Similar Questions

Explore conceptually related problems

if (x-y)^3=216 and (x-y)^5=32 , then find x^3-y^3 . The following steps are involved in solving the above problem. Arrange them in sequential order. (A) Therefore, x-y=6 and x+y=2 . (B) Solving x-y=6 and x+y=2rArrx=4, y=-2 . (C) x^3-y^3=64-(-2)^3=64+8=72 (D) (x-y)^3=216rArr(x-y)^3=6^3rArr x-y=6 and (x+y)^5=32rArr (x+y)^5=2^5rArr x+y=2 .

The following are the steps involved in factorizing 64 x^(6) -y^(6) . Arrange them in sequential order (A) {(2x)^(3) + y^(3)} {(2x)^(3) - y^(3)} (B) (8x^(3))^(2) - (y^(3))^(2) (C) (8x^(3) + y^(3)) (8x^(3) -y^(3)) (D) (2x + y) (4x^(2) -2xy + y^(2)) (2x - y) (4x^(2) + 2xy + y^(2))

If (x^(3)+4xy^(2))/(4x^(2)y+y^(3))=15/16 , then find x : y.

If |(x,y),(4,2)|=7 and |(2,3),(y,x)|=4 , then

If (4x^2-3y^2):(2x^2+5y^2)=12:19 then x:y=

Circles x^(2)+y^(2)=4 and x^(2)+y^(2)-2x-4y+3=0