Home
Class 12
MATHS
If A=[{:(1,2,3),(2,3,2),(3,3,4):}], find...

If `A=[{:(1,2,3),(2,3,2),(3,3,4):}]`, find `adj.A`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix} \), we will follow these steps: ### Step 1: Find the Cofactors of the Matrix The cofactor \( C_{ij} \) of an element \( a_{ij} \) is calculated using the formula: \[ C_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \( M_{ij} \) is the determinant of the submatrix obtained by deleting the \( i \)-th row and \( j \)-th column. ### Step 2: Calculate the Cofactors 1. **Cofactor \( C_{11} \)**: \[ M_{11} = \begin{vmatrix} 3 & 2 \\ 3 & 4 \end{vmatrix} = (3)(4) - (2)(3) = 12 - 6 = 6 \] \[ C_{11} = (-1)^{1+1} \cdot 6 = 6 \] 2. **Cofactor \( C_{12} \)**: \[ M_{12} = \begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix} = (2)(4) - (2)(3) = 8 - 6 = 2 \] \[ C_{12} = (-1)^{1+2} \cdot 2 = -2 \] 3. **Cofactor \( C_{13} \)**: \[ M_{13} = \begin{vmatrix} 2 & 3 \\ 3 & 3 \end{vmatrix} = (2)(3) - (3)(3) = 6 - 9 = -3 \] \[ C_{13} = (-1)^{1+3} \cdot (-3) = -3 \] 4. **Cofactor \( C_{21} \)**: \[ M_{21} = \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = (2)(4) - (3)(3) = 8 - 9 = -1 \] \[ C_{21} = (-1)^{2+1} \cdot (-1) = 1 \] 5. **Cofactor \( C_{22} \)**: \[ M_{22} = \begin{vmatrix} 1 & 3 \\ 3 & 4 \end{vmatrix} = (1)(4) - (3)(3) = 4 - 9 = -5 \] \[ C_{22} = (-1)^{2+2} \cdot (-5) = -5 \] 6. **Cofactor \( C_{23} \)**: \[ M_{23} = \begin{vmatrix} 1 & 2 \\ 3 & 3 \end{vmatrix} = (1)(3) - (2)(3) = 3 - 6 = -3 \] \[ C_{23} = (-1)^{2+3} \cdot (-3) = 3 \] 7. **Cofactor \( C_{31} \)**: \[ M_{31} = \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = (2)(2) - (3)(3) = 4 - 9 = -5 \] \[ C_{31} = (-1)^{3+1} \cdot (-5) = -5 \] 8. **Cofactor \( C_{32} \)**: \[ M_{32} = \begin{vmatrix} 1 & 3 \\ 2 & 2 \end{vmatrix} = (1)(2) - (3)(2) = 2 - 6 = -4 \] \[ C_{32} = (-1)^{3+2} \cdot (-4) = 4 \] 9. **Cofactor \( C_{33} \)**: \[ M_{33} = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = (1)(3) - (2)(2) = 3 - 4 = -1 \] \[ C_{33} = (-1)^{3+3} \cdot (-1) = -1 \] ### Step 3: Form the Cofactor Matrix The cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 6 & -2 & -3 \\ 1 & -5 & 3 \\ -5 & 4 & -1 \end{bmatrix} \] ### Step 4: Transpose the Cofactor Matrix The adjoint of \( A \), denoted as \( \text{adj}(A) \), is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{bmatrix} 6 & 1 & -5 \\ -2 & -5 & 4 \\ -3 & 3 & -1 \end{bmatrix} \] ### Final Answer Thus, the adjoint of the matrix \( A \) is: \[ \text{adj}(A) = \begin{bmatrix} 6 & 1 & -5 \\ -2 & -5 & 4 \\ -3 & 3 & -1 \end{bmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)|20 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,3,3),(1,4,3),(1,3,4):}] , verify A.(adj.A)=|A|I and find A^(-1) .

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

Knowledge Check

  • If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

    A
    ` [{:( 3,3,3),(6,9,15),(9,15,36):}]`
    B
    ` [{:( 1,2,3),(1,3,5),(1,5,12):}]`
    C
    ` [{:( 3,6,9),(3,9,15),( 3,15,36):}]`
    D
    none of these
  • If A = [{:(1,1,2),(1,3,4),(1,-1,3):}] , B = adj A and C = 3A then (|adjB|)/(|C |) is equal to

    A
    8
    B
    16
    C
    72
    D
    2
  • If A = [ (1,-2,2),(0,2,-3),(3,-2,4)] then A (adj A ) =

    A
    `[ (1,7,-9),(2,3,4),(-1,-1,0)]`
    B
    `[ (4,-5,3),(-3,-2,1),(0,7,9)]`
    C
    `[(8,0,0),(0,8,0),(0,0,8)]`
    D
    `[(0,-1,3),(0,4,7),(0,0,2)]`
  • Similar Questions

    Explore conceptually related problems

    If A = [(-4,-3,-3),(1,0,1),(4,4,3)] , find adj (A)

    If A=[{:(3,1),(2,-3):}] , then find |adj.A| .

    If A = [{:( -1, 2, -3),( -2,0, 3),( 3, -3, 1):}] be a matrix such that |A| adj (A ^(-1)) = KA, then find the value of K.

    Verify : A(adj.A)=(adj.A)A=|A|I when : A=[{:(1,-2,2),(2,3,5),(-2,0,1):}]

    If A={:[(3,4,3),(2,5,7),(1,2,3)]:} then abs(Adj(AdjA))=