Home
Class 12
MATHS
If A=[{:(1,2,3),(2,3,2),(3,3,4):}], find...

If `A=[{:(1,2,3),(2,3,2),(3,3,4):}]`, find `adj.A`

Text Solution

AI Generated Solution

The correct Answer is:
To find the adjoint of the matrix \( A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix} \), we will follow these steps: ### Step 1: Find the Cofactors of the Matrix The cofactor \( C_{ij} \) of an element \( a_{ij} \) is calculated using the formula: \[ C_{ij} = (-1)^{i+j} \cdot M_{ij} \] where \( M_{ij} \) is the determinant of the submatrix obtained by deleting the \( i \)-th row and \( j \)-th column. ### Step 2: Calculate the Cofactors 1. **Cofactor \( C_{11} \)**: \[ M_{11} = \begin{vmatrix} 3 & 2 \\ 3 & 4 \end{vmatrix} = (3)(4) - (2)(3) = 12 - 6 = 6 \] \[ C_{11} = (-1)^{1+1} \cdot 6 = 6 \] 2. **Cofactor \( C_{12} \)**: \[ M_{12} = \begin{vmatrix} 2 & 2 \\ 3 & 4 \end{vmatrix} = (2)(4) - (2)(3) = 8 - 6 = 2 \] \[ C_{12} = (-1)^{1+2} \cdot 2 = -2 \] 3. **Cofactor \( C_{13} \)**: \[ M_{13} = \begin{vmatrix} 2 & 3 \\ 3 & 3 \end{vmatrix} = (2)(3) - (3)(3) = 6 - 9 = -3 \] \[ C_{13} = (-1)^{1+3} \cdot (-3) = -3 \] 4. **Cofactor \( C_{21} \)**: \[ M_{21} = \begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix} = (2)(4) - (3)(3) = 8 - 9 = -1 \] \[ C_{21} = (-1)^{2+1} \cdot (-1) = 1 \] 5. **Cofactor \( C_{22} \)**: \[ M_{22} = \begin{vmatrix} 1 & 3 \\ 3 & 4 \end{vmatrix} = (1)(4) - (3)(3) = 4 - 9 = -5 \] \[ C_{22} = (-1)^{2+2} \cdot (-5) = -5 \] 6. **Cofactor \( C_{23} \)**: \[ M_{23} = \begin{vmatrix} 1 & 2 \\ 3 & 3 \end{vmatrix} = (1)(3) - (2)(3) = 3 - 6 = -3 \] \[ C_{23} = (-1)^{2+3} \cdot (-3) = 3 \] 7. **Cofactor \( C_{31} \)**: \[ M_{31} = \begin{vmatrix} 2 & 3 \\ 3 & 2 \end{vmatrix} = (2)(2) - (3)(3) = 4 - 9 = -5 \] \[ C_{31} = (-1)^{3+1} \cdot (-5) = -5 \] 8. **Cofactor \( C_{32} \)**: \[ M_{32} = \begin{vmatrix} 1 & 3 \\ 2 & 2 \end{vmatrix} = (1)(2) - (3)(2) = 2 - 6 = -4 \] \[ C_{32} = (-1)^{3+2} \cdot (-4) = 4 \] 9. **Cofactor \( C_{33} \)**: \[ M_{33} = \begin{vmatrix} 1 & 2 \\ 2 & 3 \end{vmatrix} = (1)(3) - (2)(2) = 3 - 4 = -1 \] \[ C_{33} = (-1)^{3+3} \cdot (-1) = -1 \] ### Step 3: Form the Cofactor Matrix The cofactor matrix \( C \) is: \[ C = \begin{bmatrix} 6 & -2 & -3 \\ 1 & -5 & 3 \\ -5 & 4 & -1 \end{bmatrix} \] ### Step 4: Transpose the Cofactor Matrix The adjoint of \( A \), denoted as \( \text{adj}(A) \), is the transpose of the cofactor matrix: \[ \text{adj}(A) = C^T = \begin{bmatrix} 6 & 1 & -5 \\ -2 & -5 & 4 \\ -3 & 3 & -1 \end{bmatrix} \] ### Final Answer Thus, the adjoint of the matrix \( A \) is: \[ \text{adj}(A) = \begin{bmatrix} 6 & 1 & -5 \\ -2 & -5 & 4 \\ -3 & 3 & -1 \end{bmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)|20 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise FREQUENTLY ASKED QUESTIONS|17 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(1,3,3),(1,4,3),(1,3,4):}] , verify A.(adj.A)=|A|I and find A^(-1) .

Let A=[{:(1,-2,-3),(0,1,0),(-4,1,0):}] Find adj A.

If [{:( 1,2,3),(1,3,5),(1,5,12):}] then adj (adj A) is

If A = [{:(1,1,2),(1,3,4),(1,-1,3):}] , B = adj A and C = 3A then (|adjB|)/(|C |) is equal to

If A = [(-4,-3,-3),(1,0,1),(4,4,3)] , find adj (A)

If A=[{:(3,1),(2,-3):}] , then find |adj.A| .

Verify : A(adj.A)=(adj.A)A=|A|I when : A=[{:(1,-2,2),(2,3,5),(-2,0,1):}]

MODERN PUBLICATION-DETERMINANTS-Examples (FREQUENCY ASKED QUESTIONS)
  1. For what value of x , the matrix [5-xx+1 2 4] is singular?

    Text Solution

    |

  2. If A and B are invertible matrices of order 3, |A|=2 and |(AB)^(-1)|=-...

    Text Solution

    |

  3. If A=[{:(1,2,3),(2,3,2),(3,3,4):}], find adj.A

    Text Solution

    |

  4. Given A=((2,-3),(-4,7)) compute A^(-1) and show that 2A^(-1)=9I-A

    Text Solution

    |

  5. For the matrix A=[1 1 1 1 2-3 2-1 3] . Show that A^3-6A^2+5A+11\ I3=O ...

    Text Solution

    |

  6. Find the inverse of the matrix : A=[{:(0,1,2),(0,1,1),(1,0,2):}]

    Text Solution

    |

  7. If A=[(1,-2,3),(0,-1,4),(-2,2,1)], find (A')^(-1)

    Text Solution

    |

  8. If A=[2 3 1-4]and B=[1-2-1 3], then verify that (A B)^(-1)=B^(-1)A^(-1...

    Text Solution

    |

  9. If A=[{:(1,3,3),(1,4,3),(1,3,4):}], verify A.(adj.A)=|A|I and find A^(...

    Text Solution

    |

  10. Find the inverse of each of the matrices given below : Computer (A...

    Text Solution

    |

  11. Find A^(-1) if A=|(0,1,1),(1,0,1),(1,1,0)| and show that A^(-1)=(A^(2)...

    Text Solution

    |

  12. x+2y=9 2x+4y=7

    Text Solution

    |

  13. Solve the following system of equations by matrix method : 3x-4y=5 a...

    Text Solution

    |

  14. Using matrices, solve the following system of equations: 4x+3y+3z=6...

    Text Solution

    |

  15. Solve the following system of equations by matrix method : x+y-2=3...

    Text Solution

    |

  16. Using elementary transformations, find the inverse of the matrix A=(8 ...

    Text Solution

    |

  17. If A=[[2,3,4],[1,-1,0],[0,1,2]], find A^(-1). Hence, solve the system...

    Text Solution

    |

  18. If A=[{:(2,3,10),(4,-6,5),(6,9,-20):}], find A^(-1). Using A^(-1), sol...

    Text Solution

    |

  19. Use product [{:(1,-1,2),(0,2,-3),(3,-2,4):}][{:(-2,0,1),(9,2,-3),(6,1,...

    Text Solution

    |

  20. Solve, using matrices : 2x-y+3z=5, 3x+2y-z=7 and 4x+5y-5z=9

    Text Solution

    |