Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
DETERMINANTS
MODERN PUBLICATION|Exercise Exercise 4(b) (SHORT ANSWER TYPE QUESTIONS)|11 VideosDETERMINANTS
MODERN PUBLICATION|Exercise Exercise 4(b) (LONG ANSWER TYPE QUESTIONS (I))|19 VideosDETERMINANTS
MODERN PUBLICATION|Exercise Examples (QUESTIONS FROM NCERT EXAMPLAR|4 VideosCONTINUITY AND DIFFERENTIABILITY
MODERN PUBLICATION|Exercise CHAPTER TEST|12 VideosDIFFERENTIAL EQUATIONS
MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
Similar Questions
Explore conceptually related problems
MODERN PUBLICATION-DETERMINANTS-Exercise 4(a) (SHORT ANSWER TYPE QUESTIONS)
- Evalute the determinants in queations 1 and 2 : Find the values of x...
Text Solution
|
- Evalute the determinants in queations 1 and 2 : Find the values of x...
Text Solution
|
- Solve the equation: |[3,x],[x,1]|=|[3,2],[4,1]|
Text Solution
|
- Find the value of 'x' if : |{:(3,x),(x,1):}|=|{:(5,2),(4,-1):}|
Text Solution
|
- Find the value of 'x' if : |{:(2x,3),(5,2):}|=|{:(16,3),(5,2):}|, x ...
Text Solution
|
- if |(x+1,x-1),(x-3,x+2)|= |(4,-1),(1,3)|. find the value of x.
Text Solution
|
- Find the value of 'x' if : |{:(-1,2),(4,8):}|=|{:(2,x),(x,-4):}|
Text Solution
|
- If |xx1x|=|3 4 1 2|, write the positive value of xdot
Text Solution
|
- If A=[{:(1,3),(4,1):}], then find |3A'|.
Text Solution
|
- |[3,-1,-2],[ 0, 0,-1],[ 3,-5, 0]|
Text Solution
|
- Write the minor and cofactor of each element of second column in the f...
Text Solution
|
- Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (i...
Text Solution
|
- Evalute the determinants : (i) |{:(3,-1,-2),(0,0,1),(3,-5,0):}| (i...
Text Solution
|
- Evaluate the following determinants : |{:(3,-4,5),(1,1,-2),(2,3,1):}...
Text Solution
|
- Evaluate the following determinants by two method : |{:(1,2,4),(-1,3...
Text Solution
|
- Evaluate the following determinants by two method : |{:(0,2,0),(2,3,...
Text Solution
|
- Evalute the determinants in queations 1 and 2 : If A = |{:(1,1,-2),(...
Text Solution
|
- If A=[{:(2,1,1),(1,2,1),(1,1,2):}], then show that : |4A|=64|A|.
Text Solution
|
- |(1!,2!,3!),(2!,3!,4!),(3!,4!,5!)|=?
Text Solution
|
- If |{:(x+1,1,1),(1,x+1,1),(-1,1,x+1):}|=0, find the value of 'x'.
Text Solution
|