Home
Class 12
MATHS
For the matrix A=[{:(2,1),(3,0):}] , fin...

For the matrix `A=[{:(2,1),(3,0):}]` , find the numbers 'a' and 'b' such that `A^(2)+aA+bI=O`. Hence , find `A^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of 'a' and 'b' such that \( A^2 + aA + bI = O \), where \( A = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} \) and \( I \) is the identity matrix. After finding 'a' and 'b', we will also find the inverse of matrix \( A \). ### Step 1: Calculate \( A^2 \) First, we need to calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} \] Calculating the product: - The element at (1,1): \( 2 \cdot 2 + 1 \cdot 3 = 4 + 3 = 7 \) - The element at (1,2): \( 2 \cdot 1 + 1 \cdot 0 = 2 + 0 = 2 \) - The element at (2,1): \( 3 \cdot 2 + 0 \cdot 3 = 6 + 0 = 6 \) - The element at (2,2): \( 3 \cdot 1 + 0 \cdot 0 = 3 + 0 = 3 \) Thus, \[ A^2 = \begin{pmatrix} 7 & 2 \\ 6 & 3 \end{pmatrix} \] ### Step 2: Set up the equation \( A^2 + aA + bI = O \) We know: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] So, we can write the equation as: \[ \begin{pmatrix} 7 & 2 \\ 6 & 3 \end{pmatrix} + a \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} + b \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Step 3: Combine the matrices This gives us: \[ \begin{pmatrix} 7 + 2a + b & 2 + a \\ 6 + 3a & 3 + b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \] ### Step 4: Set up the system of equations From the above matrix equation, we can set up the following equations: 1. \( 7 + 2a + b = 0 \) (Equation 1) 2. \( 2 + a = 0 \) (Equation 2) 3. \( 6 + 3a = 0 \) (Equation 3) 4. \( 3 + b = 0 \) (Equation 4) ### Step 5: Solve the equations From Equation 2: \[ a = -2 \] Substituting \( a = -2 \) into Equation 1: \[ 7 + 2(-2) + b = 0 \implies 7 - 4 + b = 0 \implies b = -3 \] Now, substituting \( a = -2 \) into Equation 3: \[ 6 + 3(-2) = 0 \implies 6 - 6 = 0 \quad \text{(True)} \] And substituting \( b = -3 \) into Equation 4: \[ 3 + (-3) = 0 \quad \text{(True)} \] Thus, we have: \[ a = -2, \quad b = -3 \] ### Step 6: Find \( A^{-1} \) We know from the equation \( A^2 - 2A = 3I \): \[ A^2 = 2A + 3I \] Multiplying both sides by \( A^{-1} \): \[ A \cdot A = 2A \cdot I + 3I \cdot A^{-1} \] \[ A = 2I + 3A^{-1} \] Rearranging gives: \[ 3A^{-1} = A - 2I \] \[ A^{-1} = \frac{1}{3}(A - 2I) \] Calculating \( A - 2I \): \[ A - 2I = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 3 & -2 \end{pmatrix} \] Thus, \[ A^{-1} = \frac{1}{3} \begin{pmatrix} 0 & 1 \\ 3 & -2 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{3} \\ 1 & -\frac{2}{3} \end{pmatrix} \] ### Final Answer The values are: \[ a = -2, \quad b = -3 \] And the inverse of \( A \) is: \[ A^{-1} = \begin{pmatrix} 0 & \frac{1}{3} \\ 1 & -\frac{2}{3} \end{pmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(g) (LONG ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(h) (SHORT ANSWER TYPE QUESTIONS)|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise 4(f) (LONG ANSWER TYPE QUESTIONS)|12 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[[3,21,1]], find the numbers a and b such that A^(2)+aA+bI=O

For the matrix A=[[3,21,1]], find the numbers a and b such that A^(2)+aA+bI=0

For the matrix A=[3211], find the numbers a and b such that A^(2)+aA+bI=O. Hence find A^(-1) .

If A = [(3,1),(2,1)] find the value of |a|+|b| such that A^(2)+aA+bl=O. Hece,find A^(-1)

For the matrix A=[{:(3,1),(7,5):}] . Find 'x' and 'y' so that A^(2)+xI=yA . Hence find A^(-1) .

For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)

Consider the matrix A=[{:(2,3),(4,5):}] . Hence , find A^(-1) .

For the matrix A=[[2,31,2]] show that A^(2)-4A+I=0 Hence find A^(-1)

If A=[[2,-1-1,2]] and I is the identity matrix of order 2, then show that A^(2)=4a-3I Hence find A^(-1).

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .