Home
Class 12
MATHS
Prove that the determinant |{:(x,sinthet...

Prove that the determinant `|{:(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x):}|` is independent of `theta`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise|4 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Revision Exercise|32 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise NCERT FILE (Exercise 4.6)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

Prove that the determinate abs([x,sintheta,costheta],[-sintheta,-x,1],[costheta,1,x]) is independent of theta

Prove that the determinant Delta =|{:(x,,sintheta,,cos theta),(-sin theta,,-x,,1),(cos theta,,1,,x):}| is independent of theta .

Prove that |[x, sintheta, costheta],[-sintheta, -x, 1],[costheta, 1, x]| is independent of theta

If |{:(x,sintheta,costheta),(-sintheta,-x,1),(costheta,1,x):}|=8 , then the value of x is :

Evaluate the determinants in |{:(costheta,-sintheta),(sintheta,costheta):}|

If sintheta+costheta=x then sintheta-costheta=?

Evaluate the determinates abs([-costheta,-sin theta],[sintheta,-costheta])

Let triangle1=|{:(x,sintheta,costheta),(-sintheta,x,1),(costheta,1,x):}| and triangle2=|{:(x,sin2theta,cos2theta),(-sin2theta,x,1),(cos2theta,1,x):}| then which of following is/are true?

MODERN PUBLICATION-DETERMINANTS-Miscellaneous Exercise on Chapter 4
  1. Prove that the determinant |{:(x,sintheta,costheta),(-sintheta,-x,1),(...

    Text Solution

    |

  2. Without expanding the determinant , prove that |{:(a, a^(2),bc),(b,b...

    Text Solution

    |

  3. Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,co...

    Text Solution

    |

  4. If a, b and c are real numbers, and Delta=|b+cc+a a+b c+a a+bb+c a+bb+...

    Text Solution

    |

  5. Solve the equation |x+a xxxx+a xxxx+a|=0, a!= 0

    Text Solution

    |

  6. Prove that |a^2b c a c+c^2a^2+a bb^2a c a bb^2+b cc^2|=4a^2b^2c^2 .

    Text Solution

    |

  7. If A-^1=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^(-...

    Text Solution

    |

  8. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  9. Evaluate: [[x,y,x+y],[y,x+y,x],[x+y,x,y]]

    Text Solution

    |

  10. Evaluate the following: |[1,x,y],[1, x+y, y],[1, x, x+y]|

    Text Solution

    |

  11. Using peoperties of determinants in questions 11 to 15, prove that : ...

    Text Solution

    |

  12. Using properties of determinants. Prove that |xx^2 1+p x^3y y^2 1+p y^...

    Text Solution

    |

  13. Using properties of determinants, prove the following: |3"a"-"a"+"...

    Text Solution

    |

  14. Show that |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p 106 p+3q|=1.

    Text Solution

    |

  15. Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, ...

    Text Solution

    |

  16. 2/x+3/y+10/z=4, 4/x-6/y+5/z=1, 6/x+9/y-20/z=2

    Text Solution

    |

  17. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  18. Choose the correct answer in questions 17 to 19: If x, y, z are non...

    Text Solution

    |

  19. Let A=[(1,sintheta, 1),(-sintheta, 1, sintheta),(-1, -sintheta, 1)], w...

    Text Solution

    |