Home
Class 12
MATHS
For the matrix A=[{:(3,1),(7,5):}]. Find...

For the matrix `A=[{:(3,1),(7,5):}]`. Find 'x' and 'y' so that `A^(2)+xI=yA`. Hence find `A^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) such that \( A^2 + xI = yA \), and then we will find the inverse of matrix \( A \). Given the matrix: \[ A = \begin{pmatrix} 3 & 1 \\ 7 & 5 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ 7 & 5 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 7 & 5 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 3 \cdot 3 + 1 \cdot 7 = 9 + 7 = 16 \) - First row, second column: \( 3 \cdot 1 + 1 \cdot 5 = 3 + 5 = 8 \) - Second row, first column: \( 7 \cdot 3 + 5 \cdot 7 = 21 + 35 = 56 \) - Second row, second column: \( 7 \cdot 1 + 5 \cdot 5 = 7 + 25 = 32 \) Thus, we have: \[ A^2 = \begin{pmatrix} 16 & 8 \\ 56 & 32 \end{pmatrix} \] ### Step 2: Set up the equation \( A^2 + xI = yA \) The identity matrix \( I \) for a \( 2 \times 2 \) matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] So, \[ xI = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \] Now, substituting into the equation: \[ A^2 + xI = yA \] becomes: \[ \begin{pmatrix} 16 & 8 \\ 56 & 32 \end{pmatrix} + \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} = y \begin{pmatrix} 3 & 1 \\ 7 & 5 \end{pmatrix} \] This simplifies to: \[ \begin{pmatrix} 16 + x & 8 \\ 56 & 32 + x \end{pmatrix} = \begin{pmatrix} 3y & y \\ 7y & 5y \end{pmatrix} \] ### Step 3: Equate the elements From the matrices, we can set up the following equations: 1. \( 16 + x = 3y \) 2. \( 8 = y \) 3. \( 56 = 7y \) 4. \( 32 + x = 5y \) ### Step 4: Solve for \( y \) From equation 2: \[ y = 8 \] ### Step 5: Substitute \( y \) into the other equations Substituting \( y = 8 \) into the first equation: \[ 16 + x = 3(8) \implies 16 + x = 24 \implies x = 24 - 16 = 8 \] ### Step 6: Verify with the other equations Substituting \( y = 8 \) into the third equation: \[ 56 = 7(8) \implies 56 = 56 \quad \text{(True)} \] Substituting \( y = 8 \) into the fourth equation: \[ 32 + x = 5(8) \implies 32 + x = 40 \implies x = 40 - 32 = 8 \quad \text{(True)} \] Thus, we have: \[ x = 8, \quad y = 8 \] ### Step 7: Find \( A^{-1} \) To find the inverse of \( A \), we use the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] First, calculate the determinant of \( A \): \[ \text{det}(A) = 3 \cdot 5 - 1 \cdot 7 = 15 - 7 = 8 \] Next, find the adjugate of \( A \): \[ \text{adj}(A) = \begin{pmatrix} 5 & -1 \\ -7 & 3 \end{pmatrix} \] Thus, \[ A^{-1} = \frac{1}{8} \begin{pmatrix} 5 & -1 \\ -7 & 3 \end{pmatrix} = \begin{pmatrix} \frac{5}{8} & -\frac{1}{8} \\ -\frac{7}{8} & \frac{3}{8} \end{pmatrix} \] ### Final Answer The values are: \[ x = 8, \quad y = 8 \] And the inverse of \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{5}{8} & -\frac{1}{8} \\ -\frac{7}{8} & \frac{3}{8} \end{pmatrix} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Check your understanding|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Competition file|14 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,1),(7,5):}] , find x and y such that A^(2)+xI=yA.

For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)

For the matrix A=[[3,17,5]], find x and y sot that A^(2)+xI+yA=0 Hence,Find A^(-1)

Find the inverse of each of the matrices given below : if A=[(3,1),(7,5)] find x and y such that A^(2)=deltaA-2I . Hence , find A^(-1) .

For the matrix A=[{:(2,1),(3,0):}] , find the numbers 'a' and 'b' such that A^(2)+aA+bI=O . Hence , find A^(-1) .

For the matrix A=[3175], find x and y so that A^(2)+xI=yA

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-4A+I=O and hence, find A^(-1) .

MODERN PUBLICATION-DETERMINANTS-Revision Exercise
  1. For the matrix A=[{:(3,1),(7,5):}]. Find 'x' and 'y' so that A^(2)+xI=...

    Text Solution

    |

  2. |(1,cos(beta-alpha),cos(gamma-alpha)), (cos(alpha-beta),1,cos(gamma-be...

    Text Solution

    |

  3. Prove tha following |{:(a+b+nc,na-a,nb-b),(nc-c,b+c+na,nb-b),(nc-c,n...

    Text Solution

    |

  4. Prove: |(a^2+b^2)/ccc a(b^2+c^2)/a a bb(c^2+a^2)/b|=4a b c

    Text Solution

    |

  5. Prove that |[a^2, a^2-(b-c)^2, bc],[b^2, b^2-(c-a)^2, ca],[c^2, c^2-(...

    Text Solution

    |

  6. Show that | (-a(b^2 + c^2 - a^2), 2b^3, 2c^3), (2a^3, -b(c^2 + a...

    Text Solution

    |

  7. Prove that Delta=|(1,bc+ad,b^(2)c^(2)+a^(2)d^(2)),(1,ca+bd,c^(2)a^(2)+...

    Text Solution

    |

  8. |[(a+1)(a+2),a+2,1],[(a+2)(a+3),a+3,1],[(a+3)(a+4),a+4,1]|=-2

    Text Solution

    |

  9. Evaluate |{:(.^(x)C(1),,.^(x)C(2),,.^(x)C(3)),(.^(y)C(1),,.^(y)C(2),,....

    Text Solution

    |

  10. Prove that Delta=[a+b x c+dx p+q x a x+b c x+d p x+q u v w]=(1-x^2)|a ...

    Text Solution

    |

  11. Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,co...

    Text Solution

    |

  12. If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|= (a -b) (b -c) (c -a) (a + b+...

    Text Solution

    |

  13. Solve for x in R : |((x+a)(x-a),(x+b)(x-b),(x+c)(x-c)),((x-a)^3,(x-b)...

    Text Solution

    |

  14. If a,b,c are in A.P. find the value of: ||2y+4, 5y+7, 8y+a],[3y+5, 6y+...

    Text Solution

    |

  15. If ax^(2)+2hxy+by^(2)+2gx+2fy+c-=(lx+my+n)(l'x+m'y+n'), then prove tha...

    Text Solution

    |

  16. If a+b+c=0 and |[a-x,c,b],[c,b-x,a],[b,a,c-x]|=0 then x=

    Text Solution

    |

  17. If A+B+C=pi, then value of |{:(sin(A+B+C),sinB,cosC),(-sinB,0,tanA),(c...

    Text Solution

    |

  18. Using properties of determinants. Prove that |xx^2 1+p x^3y y^2 1+p y^...

    Text Solution

    |

  19. If A=[[3,-3,4],[2,-3,4],[0,-1,1]] , then

    Text Solution

    |

  20. If A=[{:(3,-3,4),(2,-3,4),(0,-1,1):}], then show that A^(3)=A^(-1).

    Text Solution

    |