Home
Class 12
MATHS
For the matrix A=[{:(3,1),(7,5):}]. Find...

For the matrix `A=[{:(3,1),(7,5):}]`. Find 'x' and 'y' so that `A^(2)+xI=yA`. Hence find `A^(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( x \) and \( y \) such that \( A^2 + xI = yA \), and then we will find the inverse of matrix \( A \). Given the matrix: \[ A = \begin{pmatrix} 3 & 1 \\ 7 & 5 \end{pmatrix} \] ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & 1 \\ 7 & 5 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ 7 & 5 \end{pmatrix} \] Calculating the elements: - First row, first column: \( 3 \cdot 3 + 1 \cdot 7 = 9 + 7 = 16 \) - First row, second column: \( 3 \cdot 1 + 1 \cdot 5 = 3 + 5 = 8 \) - Second row, first column: \( 7 \cdot 3 + 5 \cdot 7 = 21 + 35 = 56 \) - Second row, second column: \( 7 \cdot 1 + 5 \cdot 5 = 7 + 25 = 32 \) Thus, we have: \[ A^2 = \begin{pmatrix} 16 & 8 \\ 56 & 32 \end{pmatrix} \] ### Step 2: Set up the equation \( A^2 + xI = yA \) The identity matrix \( I \) for a \( 2 \times 2 \) matrix is: \[ I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] So, \[ xI = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} \] Now, substituting into the equation: \[ A^2 + xI = yA \] becomes: \[ \begin{pmatrix} 16 & 8 \\ 56 & 32 \end{pmatrix} + \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} = y \begin{pmatrix} 3 & 1 \\ 7 & 5 \end{pmatrix} \] This simplifies to: \[ \begin{pmatrix} 16 + x & 8 \\ 56 & 32 + x \end{pmatrix} = \begin{pmatrix} 3y & y \\ 7y & 5y \end{pmatrix} \] ### Step 3: Equate the elements From the matrices, we can set up the following equations: 1. \( 16 + x = 3y \) 2. \( 8 = y \) 3. \( 56 = 7y \) 4. \( 32 + x = 5y \) ### Step 4: Solve for \( y \) From equation 2: \[ y = 8 \] ### Step 5: Substitute \( y \) into the other equations Substituting \( y = 8 \) into the first equation: \[ 16 + x = 3(8) \implies 16 + x = 24 \implies x = 24 - 16 = 8 \] ### Step 6: Verify with the other equations Substituting \( y = 8 \) into the third equation: \[ 56 = 7(8) \implies 56 = 56 \quad \text{(True)} \] Substituting \( y = 8 \) into the fourth equation: \[ 32 + x = 5(8) \implies 32 + x = 40 \implies x = 40 - 32 = 8 \quad \text{(True)} \] Thus, we have: \[ x = 8, \quad y = 8 \] ### Step 7: Find \( A^{-1} \) To find the inverse of \( A \), we use the formula: \[ A^{-1} = \frac{1}{\text{det}(A)} \cdot \text{adj}(A) \] First, calculate the determinant of \( A \): \[ \text{det}(A) = 3 \cdot 5 - 1 \cdot 7 = 15 - 7 = 8 \] Next, find the adjugate of \( A \): \[ \text{adj}(A) = \begin{pmatrix} 5 & -1 \\ -7 & 3 \end{pmatrix} \] Thus, \[ A^{-1} = \frac{1}{8} \begin{pmatrix} 5 & -1 \\ -7 & 3 \end{pmatrix} = \begin{pmatrix} \frac{5}{8} & -\frac{1}{8} \\ -\frac{7}{8} & \frac{3}{8} \end{pmatrix} \] ### Final Answer The values are: \[ x = 8, \quad y = 8 \] And the inverse of \( A \) is: \[ A^{-1} = \begin{pmatrix} \frac{5}{8} & -\frac{1}{8} \\ -\frac{7}{8} & \frac{3}{8} \end{pmatrix} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DETERMINANTS

    MODERN PUBLICATION|Exercise Check your understanding|10 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Competition file|14 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Exercise|4 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos

Similar Questions

Explore conceptually related problems

If A=[{:(3,1),(7,5):}] , find x and y such that A^(2)+xI=yA.

For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)

For the matrix A=[[3,17,5]], find x and y sot that A^(2)+xI+yA=0 Hence,Find A^(-1)

Find the inverse of each of the matrices given below : if A=[(3,1),(7,5)] find x and y such that A^(2)=deltaA-2I . Hence , find A^(-1) .

For the matrix A=[{:(2,1),(3,0):}] , find the numbers 'a' and 'b' such that A^(2)+aA+bI=O . Hence , find A^(-1) .

For the matrix A=[3175], find x and y so that A^(2)+xI=yA

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[{:(2,-1),(1,3):}] , then show that A^(2)-5A+7I_(2)=O , hence find A^(-1) .

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-4A+I=O and hence, find A^(-1) .