Home
Class 12
MATHS
Find dy/dx, if x and y are connected par...

Find `dy/dx`, if x and y are connected parametrically by the equations, given below without eliminating the parameter:
`x=asintheta,y=a(costheta+log"tan"theta/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the parametric equations \(x = a \sin \theta\) and \(y = a \left(\cos \theta + \log \tan \frac{\theta}{2}\right)\), we will use the chain rule for parametric differentiation. ### Step-by-Step Solution: 1. **Differentiate \(y\) with respect to \(\theta\)**: \[ y = a \left(\cos \theta + \log \tan \frac{\theta}{2}\right) \] We will differentiate \(y\) with respect to \(\theta\): \[ \frac{dy}{d\theta} = a \left(-\sin \theta + \frac{d}{d\theta} \log \tan \frac{\theta}{2}\right) \] Using the chain rule for the logarithm: \[ \frac{d}{d\theta} \log u = \frac{1}{u} \cdot \frac{du}{d\theta} \] where \(u = \tan \frac{\theta}{2}\). Therefore, \[ \frac{du}{d\theta} = \frac{1}{2} \sec^2 \frac{\theta}{2} \] Thus, \[ \frac{d}{d\theta} \log \tan \frac{\theta}{2} = \frac{1}{\tan \frac{\theta}{2}} \cdot \frac{1}{2} \sec^2 \frac{\theta}{2} \] 2. **Combine the derivatives**: \[ \frac{dy}{d\theta} = a \left(-\sin \theta + \frac{1}{\tan \frac{\theta}{2}} \cdot \frac{1}{2} \sec^2 \frac{\theta}{2}\right) \] 3. **Differentiate \(x\) with respect to \(\theta\)**: \[ x = a \sin \theta \] Differentiating \(x\) gives: \[ \frac{dx}{d\theta} = a \cos \theta \] 4. **Find \(\frac{dy}{dx}\)**: Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = \frac{a \left(-\sin \theta + \frac{1}{\tan \frac{\theta}{2}} \cdot \frac{1}{2} \sec^2 \frac{\theta}{2}\right)}{a \cos \theta} \] The \(a\) cancels out: \[ \frac{dy}{dx} = \frac{-\sin \theta + \frac{1}{\tan \frac{\theta}{2}} \cdot \frac{1}{2} \sec^2 \frac{\theta}{2}}{\cos \theta} \] 5. **Simplify the expression**: Recognizing that \(\tan \frac{\theta}{2} = \frac{\sin \frac{\theta}{2}}{\cos \frac{\theta}{2}}\) and \(\sec^2 \frac{\theta}{2} = \frac{1}{\cos^2 \frac{\theta}{2}}\), we can further simplify the expression if necessary. ### Final Result: Thus, the derivative \(\frac{dy}{dx}\) is given by: \[ \frac{dy}{dx} = \frac{-\sin \theta + \frac{1}{2} \cdot \frac{\sec^2 \frac{\theta}{2}}{\tan \frac{\theta}{2}}}{\cos \theta} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (LONG ANSWER TYPE QUESTIONS (I))|20 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(g) (SHORT ANSWER TYPE QUESTIONS)|28 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=logt,y=sint

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=ctantheta,y=c cottheta

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=acostheta,y=bsintheta

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=a(theta-sintheta),y=b(1+costheta)

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: y=a(theta+sintheta),x=a(1+costheta)

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=atan^(2)theta,y=bsec^(2)theta

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=acos^(2)theta,y=bsin^(2)theta

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=2cos^(2)theta,y=2sin^(2)theta

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=2cos^(3)theta,y=2sin^(3)theta

Find dy/dx , if x and y are connected parametrically by the equations, given below without eliminating the parameter: x=3cos^(3)theta,y=3sin^(3)theta