Home
Class 12
MATHS
Differentiate w.r.t. as indicated : co...

Differentiate w.r.t. as indicated :
`cos^(-1)(1/sqrt(1+x^(2)))" w.r.t. "tan^(-1)x`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( \cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right) \) with respect to \( \tan^{-1}(x) \), we will follow these steps: ### Step 1: Define the functions Let: - \( u = \cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right) \) - \( v = \tan^{-1}(x) \) ### Step 2: Differentiate \( u \) with respect to \( x \) To find \( \frac{du}{dx} \), we need to differentiate \( u \): Using the chain rule: \[ \frac{du}{dx} = -\frac{1}{\sqrt{1 - \left(\frac{1}{\sqrt{1+x^2}}\right)^2}} \cdot \frac{d}{dx}\left(\frac{1}{\sqrt{1+x^2}}\right) \] First, simplify \( \sqrt{1 - \left(\frac{1}{\sqrt{1+x^2}}\right)^2} \): \[ \sqrt{1 - \frac{1}{1+x^2}} = \sqrt{\frac{(1+x^2)-1}{1+x^2}} = \sqrt{\frac{x^2}{1+x^2}} = \frac{|x|}{\sqrt{1+x^2}} \] Now, differentiate \( \frac{1}{\sqrt{1+x^2}} \): \[ \frac{d}{dx}\left(\frac{1}{\sqrt{1+x^2}}\right) = -\frac{1}{2(1+x^2)^{3/2}} \cdot 2x = -\frac{x}{(1+x^2)^{3/2}} \] Thus, \[ \frac{du}{dx} = -\frac{1}{\frac{|x|}{\sqrt{1+x^2}}} \cdot \left(-\frac{x}{(1+x^2)^{3/2}}\right) = \frac{x}{|x|\sqrt{1+x^2}} \cdot \frac{1}{(1+x^2)^{3/2}} = \frac{x}{|x|(1+x^2)} = \frac{1}{(1+x^2)} \quad \text{(for } x > 0\text{)} \] ### Step 3: Differentiate \( v \) with respect to \( x \) Now, differentiate \( v \): \[ \frac{dv}{dx} = \frac{1}{1+x^2} \] ### Step 4: Use the chain rule to find \( \frac{du}{dv} \) Using the chain rule: \[ \frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{\frac{1}{1+x^2}}{\frac{1}{1+x^2}} = 1 \] ### Conclusion Thus, the derivative of \( u \) with respect to \( v \) is: \[ \frac{du}{dv} = 1 \] ### Final Answer The final answer is: \[ \frac{d}{d(\tan^{-1}(x))} \cos^{-1}\left(\frac{1}{\sqrt{1+x^2}}\right) = 1 \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))|49 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (SHORT ANSWER TYPE QUESTIONS)|11 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate w.r.t. as indicated : sin^(-1)((2x)/(1+x^(2)))" w.r.t. "tan^(-1)x

Differentiate w.r.t. as indicated : tan^(-1)(x/(sqrt(1-x^(2))))" w.r.t. "sin^(-1)(2xsqrt(1-x^(2))) .

Differentiate w.r.t. as indicated : sin^(-1)((2x)/(1+x^(2)))" w.r.t. "tan^(-1)((2x)/(1-x^(2)))

Differentiate w.r.t. as indicated : cos^(-1)((1-x^(2))/(1+x^(2)))" w.r.t. "sin^(-1)((2x)/(1+x^(2)))

Differentiate w.r.t. as indicated : tan^(-1)((sqrt(1+x^(2))-1)/(x))" w.r.t. "sin^(-1)((2x)/(1+x^(2)))

Differentiate w.r.t. as indicated : tan^(-1)(x/(1+sqrt(1-x^(2))))" w.r.t. "sin(2cot^(-1)sqrt((1+x)/(1-x)))

Differentiate w.r.t. as indicated : tan^(-1)((3x-x^(3))/(1-3x^(2)))" w.r.t. "tan^(-1)((x)/(sqrt(1-x^(2))))

Differentiate w.r.t. as indicated : sqrt(1+x^(2))" w.r.t. "tan^(-1)x

Differentiate sin^(-1)(x/sqrt(1+x^(2))) w.r.t. tan^(-1)x .

Differentiate w.r.t. as indicated : "tan"^(-1)(3x-x^(3))/(1-3x^(2))" w.r.t. ""tan"^(-1)(2x)/(1-x^(2))