Home
Class 12
MATHS
If (sinx)^(y)=(siny)^(x),"find "dy/dx....

If `(sinx)^(y)=(siny)^(x),"find "dy/dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\sin x)^y = (\sin y)^x\) and find \(\frac{dy}{dx}\), we can follow these steps: ### Step 1: Take the logarithm of both sides We start with the equation: \[ (\sin x)^y = (\sin y)^x \] Taking the natural logarithm on both sides gives: \[ \log((\sin x)^y) = \log((\sin y)^x) \] ### Step 2: Apply the logarithmic power rule Using the property of logarithms that states \(\log(a^b) = b \log(a)\), we can rewrite the equation as: \[ y \log(\sin x) = x \log(\sin y) \] ### Step 3: Differentiate both sides with respect to \(x\) Now we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(y \log(\sin x)) = \frac{d}{dx}(x \log(\sin y)) \] ### Step 4: Apply the product rule Using the product rule \(\frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx}\), we differentiate the left side: \[ \frac{dy}{dx} \log(\sin x) + y \frac{d}{dx}(\log(\sin x)) \] The derivative of \(\log(\sin x)\) is: \[ \frac{1}{\sin x} \cos x = \cot x \] So the left side becomes: \[ \frac{dy}{dx} \log(\sin x) + y \cot x \] For the right side: \[ \frac{d}{dx}(x \log(\sin y)) = \log(\sin y) + x \frac{d}{dx}(\log(\sin y)) \] The derivative of \(\log(\sin y)\) is: \[ \frac{1}{\sin y} \cos y \frac{dy}{dx} = \cot y \frac{dy}{dx} \] So the right side becomes: \[ \log(\sin y) + x \cot y \frac{dy}{dx} \] ### Step 5: Set the derivatives equal Now we set both sides equal: \[ \frac{dy}{dx} \log(\sin x) + y \cot x = \log(\sin y) + x \cot y \frac{dy}{dx} \] ### Step 6: Collect all \(\frac{dy}{dx}\) terms Rearranging gives: \[ \frac{dy}{dx} \log(\sin x) - x \cot y \frac{dy}{dx} = \log(\sin y) - y \cot x \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} (\log(\sin x) - x \cot y) = \log(\sin y) - y \cot x \] ### Step 7: Solve for \(\frac{dy}{dx}\) Finally, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{\log(\sin y) - y \cot x}{\log(\sin x) - x \cot y} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is given by: \[ \frac{dy}{dx} = \frac{\log(\sin y) - y \cot x}{\log(\sin x) - x \cot y} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(k) (SHORT ANSWER TYPE QUESTIONS)|19 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (SHORT ANSWER TYPE QUESTIONS)|27 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

If (cosx)^(y)=(siny)^(x), then find (dy)/(dx) .

If y=(sinx)^(x)+sin^(-1)sqrtx, find (dy)/(dx).

"If "y=(sinx)^(x)+sin^(-1)sqrtx", find "(dy)/(dx).

Find dy/dx" if "(sinx)^(cosy)=(cosy)^(sinx) .

If y=sinx+e^(x), Then find (dy)/(dx) .

y = sinx.e^x . Find dy/dx

y=x^(sinx)+(sin x)^(cos x), then find (dy)/(dx)

If y=(x)^(cosx)+(cosx)^(sinx) , find (dy)/(dx).

If y=(sinx)^(tanx)+(cos x)^(secx) , find (dy)/(dx).

If y=x^(-1//2)+log_(5)x+(sinx)/(cosx)+2^(x), then find (dy)/(dx)