Home
Class 12
MATHS
Differentiate the following w.r.t. x : ...

Differentiate the following w.r.t. x :
`(sqrtx)^(sqrtx)`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = (\sqrt{x})^{\sqrt{x}} \) with respect to \( x \), we can follow these steps: ### Step 1: Rewrite the function First, we rewrite the function using properties of exponents: \[ y = (\sqrt{x})^{\sqrt{x}} = x^{\frac{1}{2} \cdot \sqrt{x}} = x^{\frac{\sqrt{x}}{2}} \] ### Step 2: Take the natural logarithm of both sides Taking the natural logarithm of both sides helps us simplify the differentiation: \[ \ln y = \ln\left(x^{\frac{\sqrt{x}}{2}}\right) \] ### Step 3: Use the logarithmic identity Using the property of logarithms, we can bring down the exponent: \[ \ln y = \frac{\sqrt{x}}{2} \ln x \] ### Step 4: Differentiate both sides Now we differentiate both sides with respect to \( x \). We will use implicit differentiation on the left side and the product rule on the right side: \[ \frac{d}{dx}(\ln y) = \frac{1}{y} \frac{dy}{dx} \] For the right side, we apply the product rule: \[ \frac{d}{dx}\left(\frac{\sqrt{x}}{2} \ln x\right) = \frac{1}{2} \cdot \frac{1}{2\sqrt{x}} \ln x + \frac{\sqrt{x}}{2} \cdot \frac{1}{x} \] This simplifies to: \[ \frac{1}{4\sqrt{x}} \ln x + \frac{1}{2\sqrt{x}} \] ### Step 5: Set the derivatives equal Now we set the derivatives equal to each other: \[ \frac{1}{y} \frac{dy}{dx} = \frac{1}{4\sqrt{x}} \ln x + \frac{1}{2\sqrt{x}} \] ### Step 6: Solve for \(\frac{dy}{dx}\) To isolate \(\frac{dy}{dx}\), we multiply both sides by \( y \): \[ \frac{dy}{dx} = y \left( \frac{1}{4\sqrt{x}} \ln x + \frac{1}{2\sqrt{x}} \right) \] ### Step 7: Substitute back for \( y \) Recall that \( y = (\sqrt{x})^{\sqrt{x}} \): \[ \frac{dy}{dx} = (\sqrt{x})^{\sqrt{x}} \left( \frac{1}{4\sqrt{x}} \ln x + \frac{1}{2\sqrt{x}} \right) \] ### Step 8: Simplify the expression We can factor out \( \frac{1}{\sqrt{x}} \): \[ \frac{dy}{dx} = \frac{(\sqrt{x})^{\sqrt{x}}}{\sqrt{x}} \left( \frac{1}{4} \ln x + \frac{1}{2} \right) \] This simplifies to: \[ \frac{dy}{dx} = \frac{(\sqrt{x})^{\sqrt{x}}}{\sqrt{x}} \left( \frac{1}{4} \ln x + \frac{1}{2} \right) = \frac{(\sqrt{x})^{\sqrt{x} - 1}}{4} \ln x + \frac{(\sqrt{x})^{\sqrt{x}}}{2} \] ### Final Answer Thus, the derivative of \( y = (\sqrt{x})^{\sqrt{x}} \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{(\sqrt{x})^{\sqrt{x}}}{2} + \frac{(\sqrt{x})^{\sqrt{x} - 1}}{4} \ln x \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(i) (LONG ANSWER TYPE QUESTIONS (I))|49 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(j) (LONG ANSWER TYPE QUESTIONS (I))|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    MODERN PUBLICATION|Exercise EXERCISE 5(h) (LONG ANSWER TYPE QUESTIONS (I))|20 Videos
  • APPLICATIONS OF THE INTEGRALS

    MODERN PUBLICATION|Exercise CHAPTER TEST|12 Videos
  • DETERMINANTS

    MODERN PUBLICATION|Exercise Chapter test 4|12 Videos

Similar Questions

Explore conceptually related problems

Differentiate the following w.r.t. x : (xcosx)^(x)

Differentiate the following w.r.t. x : (sinx)^(x)

Differentiate the following w.r.t. x : e^(sinsqrtx)

Differentiate the following w.r.t. x : log(sinx)

Differentiate the following w.r.t.x. x^(x)sqrtx

Differentiate the following w.r.t. x : sqrt(e^(sqrtx)),xgt0

Differentiate the following w.r.t. x : e^(-x)

Differentiate the following w.r.t. x : sqrt(e^sqrtx),xgt0

Differentiate the following w.r.t. x : (x^(x))^(x)

Differentiate the following w.r.t. x : x^(x^(2))