Home
Class 12
MATHS
int cos 2 theta.ln((costheta+sintheta)/(...

`int cos 2 theta.ln((costheta+sintheta)/(costheta-sintheta)) d theta`

Text Solution

Verified by Experts

The correct Answer is:
`|cos 2 theta|+c`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f) FAQ|5 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (I)|15 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

Solve: costheta+sintheta=cost2theta+sin2theta

If 3 cot theta =4, " write the value of " ((2costheta+ sintheta ))/((4costheta- sintheta)).

Knowledge Check

  • int (cos2theta) . log((costheta+sintheta)/(costheta-sintheta))d theta is equal to

    A
    `(costheta-sintheta)^(2)log((costheta+sintheta)/(costheta-sintheta))+C`
    B
    `(costheta+sintheta)^(2)log((costheta+sintheta)/(costheta-sintheta))+C`
    C
    `((costheta-sintheta)^(2))/(2)log((costheta-sintheta)/(costheta+sintheta))+C`
    D
    `(1)/(2)sin2thetalogtan((pi)/(4)+theta)-(1)/(2)logsec2 theta +C`
  • intcos2thetalog((costheta+sintheta)/(costheta-sintheta))d theta is equal to

    A
    `(costheta-sintheta)^2log((costheta+sintheta)/(costheta-sintheta))+C`
    B
    `(costheta+sintheta)^2log((costheta+sintheta)/(costheta-sintheta))+C`
    C
    `((costheta-sintheta)^2)/2log""((costheta-sintheta)/(costheta+sintheta))+C`
    D
    `1/2sin2thetalogtan(pi/4+theta)-1/2logsec2theta+C`
  • (sintheta+sin2theta)/(1+costheta+cos2theta) =

    A
    `(1)/(2)tantheta`
    B
    `(1)/(2)cottheta`
    C
    `tantheta`
    D
    `cottheta`
  • Similar Questions

    Explore conceptually related problems

    The value of (2(sin2theta+2cos^2theta-1))/(costheta-sintheta-cos3theta+sin3theta) is adot costheta b. sectheta c. cosectheta d. sintheta

    If 5 tan theta =4, " write the value of " ((costheta- sintheta ))/((costheta+ sintheta)).

    Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]

    (sintheta+sin2theta)/(1+costheta+cos2theta)=?

    The value of (cos^(3)theta+sin^(3)theta)/(costheta+sintheta)+(cos^(3)theta-sin^(3)theta)/(costheta-sintheta) is equal to