Home
Class 12
MATHS
int x^3 log x dx...

`int x^3 log x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^3 \log x \, dx \), we will use the method of integration by parts. The formula for integration by parts is given by: \[ \int u \, dv = uv - \int v \, du \] ### Step 1: Choose \( u \) and \( dv \) Let: - \( u = \log x \) (which will simplify when differentiated) - \( dv = x^3 \, dx \) (which can be easily integrated) ### Step 2: Differentiate \( u \) and Integrate \( dv \) Now we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{1}{x} \, dx \] - Integrate \( dv \): \[ v = \int x^3 \, dx = \frac{x^4}{4} \] ### Step 3: Apply Integration by Parts Now, substitute \( u \), \( du \), \( v \), and \( dv \) into the integration by parts formula: \[ \int x^3 \log x \, dx = uv - \int v \, du \] This gives us: \[ \int x^3 \log x \, dx = \log x \cdot \frac{x^4}{4} - \int \frac{x^4}{4} \cdot \frac{1}{x} \, dx \] ### Step 4: Simplify the Integral The integral simplifies to: \[ \int x^3 \log x \, dx = \frac{x^4}{4} \log x - \frac{1}{4} \int x^3 \, dx \] ### Step 5: Integrate \( x^3 \) Now, we need to calculate \( \int x^3 \, dx \): \[ \int x^3 \, dx = \frac{x^4}{4} \] ### Step 6: Substitute Back Substituting this back into our equation: \[ \int x^3 \log x \, dx = \frac{x^4}{4} \log x - \frac{1}{4} \cdot \frac{x^4}{4} + C \] This simplifies to: \[ \int x^3 \log x \, dx = \frac{x^4}{4} \log x - \frac{x^4}{16} + C \] ### Final Answer Thus, the final answer is: \[ \int x^3 \log x \, dx = \frac{x^4}{4} \log x - \frac{x^4}{16} + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f)|12 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise 7(e )SHORT ANSWER QUESTION TYPE|19 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int x log x, dx

(i) int x^2 log x dx (ii) int (x^2+1) log x dx

Knowledge Check

  • int_(1)^(3) x^(3) log x dx=

    A
    `3 log - 26/3`
    B
    `3log 3 - 26/9`
    C
    `9log 3 - 26/3`
    D
    `9 log 3 - 26/9`
  • int e^(3 log x) . (x^4 + 1)^(-1) dx =

    A
    `"log" (x^4 + 1)`
    B
    `3log (x^4 + 1)`
    C
    `-log (x^4 + 1)`
    D
    `1/4 "log" (x^4 + 1)`
  • Similar Questions

    Explore conceptually related problems

    Evaluate the following (i) int x log (1+x) dx (ii) int x log^2x dx

    Evaluate: int x^(3)(log x)^(2)dx

    Write a value of int e^(3log x)x^(4)dx

    (i) int (log x)/x dx (ii) int (log x)^2/x dx

    Evaluate int _(1) ^(3) log x dx

    f(x)=int x log x(log x+1)dx