Home
Class 12
MATHS
int e^x cos 2x dx...

`int e^x cos 2x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^x \cos(2x) \, dx \), we will use the method of integration by parts. Let's go through the steps systematically. ### Step 1: Set up Integration by Parts We will use the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] For our integral, we choose: - \( u = e^x \) (thus \( du = e^x \, dx \)) - \( dv = \cos(2x) \, dx \) (thus \( v = \frac{1}{2} \sin(2x) \)) ### Step 2: Apply Integration by Parts Now we apply the integration by parts formula: \[ \int e^x \cos(2x) \, dx = e^x \cdot \frac{1}{2} \sin(2x) - \int \frac{1}{2} \sin(2x) \cdot e^x \, dx \] This simplifies to: \[ \int e^x \cos(2x) \, dx = \frac{1}{2} e^x \sin(2x) - \frac{1}{2} \int e^x \sin(2x) \, dx \] ### Step 3: Set Up a New Integral Let’s denote the original integral as \( I \): \[ I = \int e^x \cos(2x) \, dx \] Thus, we have: \[ I = \frac{1}{2} e^x \sin(2x) - \frac{1}{2} \int e^x \sin(2x) \, dx \] ### Step 4: Apply Integration by Parts Again Now we need to solve the integral \( \int e^x \sin(2x) \, dx \) using integration by parts again. Set: - \( u = e^x \) (thus \( du = e^x \, dx \)) - \( dv = \sin(2x) \, dx \) (thus \( v = -\frac{1}{2} \cos(2x) \)) Now applying integration by parts: \[ \int e^x \sin(2x) \, dx = e^x \left(-\frac{1}{2} \cos(2x)\right) - \int -\frac{1}{2} \cos(2x) \cdot e^x \, dx \] This simplifies to: \[ \int e^x \sin(2x) \, dx = -\frac{1}{2} e^x \cos(2x) + \frac{1}{2} \int e^x \cos(2x) \, dx \] ### Step 5: Substitute Back Now we substitute this back into our expression for \( I \): \[ I = \frac{1}{2} e^x \sin(2x) - \frac{1}{2} \left(-\frac{1}{2} e^x \cos(2x) + \frac{1}{2} I\right) \] This leads to: \[ I = \frac{1}{2} e^x \sin(2x) + \frac{1}{4} e^x \cos(2x) - \frac{1}{4} I \] ### Step 6: Solve for \( I \) Now, we can combine like terms: \[ I + \frac{1}{4} I = \frac{1}{2} e^x \sin(2x) + \frac{1}{4} e^x \cos(2x) \] This simplifies to: \[ \frac{5}{4} I = \frac{1}{2} e^x \sin(2x) + \frac{1}{4} e^x \cos(2x) \] Thus, we can solve for \( I \): \[ I = \frac{4}{5} \left(\frac{1}{2} e^x \sin(2x) + \frac{1}{4} e^x \cos(2x)\right) \] \[ I = \frac{4}{10} e^x \sin(2x) + \frac{1}{5} e^x \cos(2x) \] \[ I = \frac{2}{5} e^x \sin(2x) + \frac{1}{5} e^x \cos(2x) \] ### Final Answer Thus, the integral is: \[ \int e^x \cos(2x) \, dx = \frac{1}{5} e^x (2 \sin(2x) + \cos(2x)) + C \] where \( C \) is the constant of integration.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(f) FAQ|5 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7(g) SHORT TYPE QUESTION|13 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7( e) LONG ANSWER TYPE QUESTION (II)|1 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int e^x cos 3x dx

int e^(x)cos x*dx

(i) int e^(3x) cos 5x dx (ii) int e^(3x) sin 4x dx

Evaluate int e^(x) cos^(2) x dx

int e^(3x) " cos 2x dx "

int e^x( cos x+sinx)dx

int (e ^ (cos x) (x sin ^ (3) x + cos x)) / (sin ^ (2) x) dx

Evaluate : int e^(x) cos^(2) x (cos x-3 sin x ) dx

int e^(2x) sin x cos x dx

int e^(x)cos e^(x)dx