To solve the integral \( \int e^x \cos(2x) \, dx \), we will use the method of integration by parts. Let's go through the steps systematically.
### Step 1: Set up Integration by Parts
We will use the integration by parts formula:
\[
\int u \, dv = uv - \int v \, du
\]
For our integral, we choose:
- \( u = e^x \) (thus \( du = e^x \, dx \))
- \( dv = \cos(2x) \, dx \) (thus \( v = \frac{1}{2} \sin(2x) \))
### Step 2: Apply Integration by Parts
Now we apply the integration by parts formula:
\[
\int e^x \cos(2x) \, dx = e^x \cdot \frac{1}{2} \sin(2x) - \int \frac{1}{2} \sin(2x) \cdot e^x \, dx
\]
This simplifies to:
\[
\int e^x \cos(2x) \, dx = \frac{1}{2} e^x \sin(2x) - \frac{1}{2} \int e^x \sin(2x) \, dx
\]
### Step 3: Set Up a New Integral
Let’s denote the original integral as \( I \):
\[
I = \int e^x \cos(2x) \, dx
\]
Thus, we have:
\[
I = \frac{1}{2} e^x \sin(2x) - \frac{1}{2} \int e^x \sin(2x) \, dx
\]
### Step 4: Apply Integration by Parts Again
Now we need to solve the integral \( \int e^x \sin(2x) \, dx \) using integration by parts again. Set:
- \( u = e^x \) (thus \( du = e^x \, dx \))
- \( dv = \sin(2x) \, dx \) (thus \( v = -\frac{1}{2} \cos(2x) \))
Now applying integration by parts:
\[
\int e^x \sin(2x) \, dx = e^x \left(-\frac{1}{2} \cos(2x)\right) - \int -\frac{1}{2} \cos(2x) \cdot e^x \, dx
\]
This simplifies to:
\[
\int e^x \sin(2x) \, dx = -\frac{1}{2} e^x \cos(2x) + \frac{1}{2} \int e^x \cos(2x) \, dx
\]
### Step 5: Substitute Back
Now we substitute this back into our expression for \( I \):
\[
I = \frac{1}{2} e^x \sin(2x) - \frac{1}{2} \left(-\frac{1}{2} e^x \cos(2x) + \frac{1}{2} I\right)
\]
This leads to:
\[
I = \frac{1}{2} e^x \sin(2x) + \frac{1}{4} e^x \cos(2x) - \frac{1}{4} I
\]
### Step 6: Solve for \( I \)
Now, we can combine like terms:
\[
I + \frac{1}{4} I = \frac{1}{2} e^x \sin(2x) + \frac{1}{4} e^x \cos(2x)
\]
This simplifies to:
\[
\frac{5}{4} I = \frac{1}{2} e^x \sin(2x) + \frac{1}{4} e^x \cos(2x)
\]
Thus, we can solve for \( I \):
\[
I = \frac{4}{5} \left(\frac{1}{2} e^x \sin(2x) + \frac{1}{4} e^x \cos(2x)\right)
\]
\[
I = \frac{4}{10} e^x \sin(2x) + \frac{1}{5} e^x \cos(2x)
\]
\[
I = \frac{2}{5} e^x \sin(2x) + \frac{1}{5} e^x \cos(2x)
\]
### Final Answer
Thus, the integral is:
\[
\int e^x \cos(2x) \, dx = \frac{1}{5} e^x (2 \sin(2x) + \cos(2x)) + C
\]
where \( C \) is the constant of integration.