Home
Class 12
MATHS
int 1/(sin^2x cos^2x )dx is equal to:...

`int 1/(sin^2x cos^2x )dx` is equal to:

A

`tanx+cotx+c`

B

`tanx-cotx+c`

C

`tanx.cotx+c`

D

`tanx-cot2x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1}{\sin^2 x \cos^2 x} \, dx \), we can start by rewriting the integrand using trigonometric identities. ### Step 1: Rewrite the integrand We know that: \[ \sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x) \] Thus, we can rewrite the integral as: \[ \int \frac{1}{\sin^2 x \cos^2 x} \, dx = \int \frac{4}{\sin^2(2x)} \, dx \] ### Step 2: Use the cosecant function The integral can now be expressed in terms of the cosecant function: \[ \int \frac{4}{\sin^2(2x)} \, dx = 4 \int \csc^2(2x) \, dx \] ### Step 3: Integrate using the known integral We know that: \[ \int \csc^2(u) \, du = -\cot(u) + C \] In our case, \( u = 2x \), so \( du = 2 \, dx \) or \( dx = \frac{du}{2} \). Therefore, we have: \[ 4 \int \csc^2(2x) \, dx = 4 \cdot \frac{1}{2} \int \csc^2(u) \, du = 2 \int \csc^2(u) \, du \] Substituting back: \[ = 2 \left( -\cot(2x) + C \right) = -2 \cot(2x) + C \] ### Final Answer Thus, the solution to the integral is: \[ \int \frac{1}{\sin^2 x \cos^2 x} \, dx = -2 \cot(2x) + C \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int 1/(sin^2x cos^4x)dx

int("sin"^8 x - "cos"^8 x)/(1 - 2 "sin"^2 x "cos"^2 x) dx is equal to

Knowledge Check

  • int(1)/(sin^(2)x.cos^(2)x)dx is equal to

    A
    `sinx - cos x +C`
    B
    `tanx +cot x+C`
    C
    `cos x +sinx +C`
    D
    `tanx -cot x +C`
  • int(sin(2x))/(1+cos^2x)dx is equal to

    A
    `-1/2log(1+cos^2x)+C`
    B
    `2log(1+cos^2x)+C`
    C
    `1/2log(1+cos2x)+C`
    D
    `C-log(1+cos^2x)`
  • int (sin^2x-cos^2x)/(sin^2x cos^2 x) dx is equal to:

    A
    tanx+cotx+c
    B
    tanx+cosecx+c
    C
    `-tanx+cotx+c`
    D
    `tanx+secx+c`
  • Similar Questions

    Explore conceptually related problems

    int(sin^(2)x - cos^(2)x)/(sin^(2)x cos^(2)x) dx is equal to

    int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx is equal to

    int (sin^8x-cos^8 x)/(1-2 sin^2 x cos ^2 x) dx is equal to

    int (sin 2x)/(sin^4x+cos^4 x) dx is equal to

    int (sin^6x+cos^6x+3 sin^2x cos^2 x)dx is equal to