Home
Class 12
MATHS
(i) int tan dx=log |secx|+c (ii) int c...

(i) `int tan dx=log |secx|+c`
(ii) `int cot x dx=log |sin x|+c`
(iii) `int tan x dx=log |sin x| +c`
(iv) `int tan x dx =-log cos x +c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given integrals, we will evaluate each of the four statements one by one. ### (i) \( \int \tan x \, dx = \log |\sec x| + C \) 1. **Rewrite the integral**: \[ \tan x = \frac{\sin x}{\cos x} \] Thus, \[ \int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx \] 2. **Use substitution**: Let \( u = \cos x \). Then, \( du = -\sin x \, dx \) or \( \sin x \, dx = -du \). So, the integral becomes: \[ \int \frac{\sin x}{\cos x} \, dx = -\int \frac{1}{u} \, du \] 3. **Integrate**: \[ -\int \frac{1}{u} \, du = -\log |u| + C = -\log |\cos x| + C \] 4. **Rewrite the result**: Using the property of logarithms: \[ -\log |\cos x| = \log |\sec x| + C \] Thus, \[ \int \tan x \, dx = \log |\sec x| + C \] **Conclusion**: The first statement is **true**. --- ### (ii) \( \int \cot x \, dx = \log |\sin x| + C \) 1. **Rewrite the integral**: \[ \cot x = \frac{\cos x}{\sin x} \] Thus, \[ \int \cot x \, dx = \int \frac{\cos x}{\sin x} \, dx \] 2. **Use substitution**: Let \( u = \sin x \). Then, \( du = \cos x \, dx \). So, the integral becomes: \[ \int \frac{\cos x}{\sin x} \, dx = \int \frac{1}{u} \, du \] 3. **Integrate**: \[ \int \frac{1}{u} \, du = \log |u| + C = \log |\sin x| + C \] **Conclusion**: The second statement is **true**. --- ### (iii) \( \int \tan x \, dx = \log |\sin x| + C \) From our previous calculation, we found: \[ \int \tan x \, dx = \log |\sec x| + C \] This does not equal \( \log |\sin x| + C \). **Conclusion**: The third statement is **false**. --- ### (iv) \( \int \tan x \, dx = -\log \cos x + C \) From our previous calculation, we found: \[ \int \tan x \, dx = -\log |\cos x| + C \] This can be rewritten as: \[ -\log |\cos x| = \log |\sec x| + C \] Thus, this statement is equivalent to the first statement. **Conclusion**: The fourth statement is **true**. --- ### Summary of Results: - (i) True - (ii) True - (iii) False - (iv) True
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise VERY SHORT ANSWER TYPE QUESTONS|25 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE 7.1|29 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int (cot x)/(log sin x)dx

(i) int sec x dx=|log| tanx|+c (ii) int sec dx=log |secx+tanx|+c

int cot xx x log(sin x)dx=?

(i) int (1+ tan x)/(x +log sec x) dx (ii) int (1+ cot x)/(x+log sin x) dx.

int sin (ln x) dx

int(cot x)/(log(sin x)dx)

int e^(x)(cot x+log sin x)dx

(i) int x sin^-1 x dx (ii) int x cos^-1 x dx (iii) int x tan^-1 x dx (iv) int x cot^-1 x dx

(i) int(sec x* cosec x)/(log cot x) dx (ii) int tan^(4) x\ dx

int e^(x)(tan x-log(cos x))dx=