Home
Class 12
MATHS
int(-1)^1 sin^5 x cos^4 x dx is :...

`int_(-1)^1 sin^5 x cos^4 x dx` is :

A

1

B

-1

C

0

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{1} \sin^5 x \cos^4 x \, dx \), we can utilize the property of definite integrals that states: \[ \int_{-a}^{a} f(x) \, dx = 0 \quad \text{if } f(-x) = -f(x) \] This means that if the function \( f(x) \) is odd, the integral over a symmetric interval around zero will evaluate to zero. ### Step-by-Step Solution: 1. **Define the Function**: Let \( f(x) = \sin^5 x \cos^4 x \). 2. **Check for Oddness**: We need to check whether \( f(-x) = -f(x) \): - Calculate \( f(-x) \): \[ f(-x) = \sin^5(-x) \cos^4(-x) \] - Using the properties of sine and cosine: \[ \sin(-x) = -\sin(x) \quad \text{and} \quad \cos(-x) = \cos(x) \] - Substitute these into \( f(-x) \): \[ f(-x) = (-\sin x)^5 (\cos x)^4 = -\sin^5 x \cos^4 x = -f(x) \] 3. **Conclusion on Oddness**: Since \( f(-x) = -f(x) \), the function \( f(x) \) is odd. 4. **Evaluate the Integral**: Now, applying the property of definite integrals: \[ I = \int_{-1}^{1} f(x) \, dx = 0 \] Thus, the value of the integral is: \[ \boxed{0} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise FILL IN THE BLANKS|15 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise TRUE/FALSE QUESTIONS|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise SUB CHAPTER 7.3 EXERCISE 7(p) LONG ANSWER TYPE QUESTIONS (I)|12 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

(i) int_-8^8 (sin^93 x+x^295) dx (ii) int_-1^1 sin^5x cos^4x dx (iii) int_(-pi//4)^(pi//4) x^3 sin^4 x dx (iv) int_-1^1 x^17 cos^4 x dx

Evaluate int_(-1)^(1)sin^(5)x cos^(4)xdx

Knowledge Check

  • int_(0)^(pi)sin 5 x cos 4x dx=

    A
    `(5)/(9)`
    B
    `(9)/(5)`
    C
    `(10)/(9)`
    D
    `(10)/(3)`
  • Similar Questions

    Explore conceptually related problems

    int (1) / (sin x cos x) dx

    int (1 + sin x) / (cos x) dx

    int 1/(sin x cos x) dx

    int(cos 2x)/(1+sin x cos x)dx

    int 1/(sin^2x cos^4x)dx

    int(1-sin x+cos x)dx

    int(1)/(sin x-cos x)dx