Home
Class 12
MATHS
int0^pi sqrt(1+cosx)/(1-cosx)^(5//2) dx...

`int_0^pi sqrt(1+cosx)/(1-cosx)^(5//2) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\pi} \frac{\sqrt{1 + \cos x}}{(1 - \cos x)^{5/2}} \, dx, \] we can follow these steps: ### Step 1: Simplify the integrand We know that: \[ 1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right) \quad \text{and} \quad 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right). \] Substituting these into the integral gives: \[ I = \int_0^{\pi} \frac{\sqrt{2 \cos^2\left(\frac{x}{2}\right)}}{(2 \sin^2\left(\frac{x}{2}\right))^{5/2}} \, dx. \] ### Step 2: Rewrite the integral This simplifies to: \[ I = \int_0^{\pi} \frac{\sqrt{2} \cos\left(\frac{x}{2}\right)}{(2^{5/2} \sin^5\left(\frac{x}{2}\right))} \, dx. \] We can factor out constants: \[ I = \frac{\sqrt{2}}{4\sqrt{2}} \int_0^{\pi} \frac{\cos\left(\frac{x}{2}\right)}{\sin^5\left(\frac{x}{2}\right)} \, dx = \frac{1}{4} \int_0^{\pi} \frac{\cos\left(\frac{x}{2}\right)}{\sin^5\left(\frac{x}{2}\right)} \, dx. \] ### Step 3: Change of variables Let \( t = \sin\left(\frac{x}{2}\right) \). Then, we have: \[ dx = \frac{2}{\sqrt{1 - t^2}} \, dt. \] Also, when \( x = 0 \), \( t = 0 \) and when \( x = \pi \), \( t = 1 \). Thus, the integral becomes: \[ I = \frac{1}{4} \int_0^1 \frac{\cos\left(\frac{x}{2}\right)}{\sin^5\left(\frac{x}{2}\right)} \cdot \frac{2}{\sqrt{1 - t^2}} \, dt. \] ### Step 4: Express \(\cos\left(\frac{x}{2}\right)\) in terms of \(t\) Using the identity \( \cos\left(\frac{x}{2}\right) = \sqrt{1 - \sin^2\left(\frac{x}{2}\right)} = \sqrt{1 - t^2} \): \[ I = \frac{1}{4} \int_0^1 \frac{\sqrt{1 - t^2}}{t^5} \cdot \frac{2}{\sqrt{1 - t^2}} \, dt = \frac{1}{2} \int_0^1 t^{-5} \, dt. \] ### Step 5: Evaluate the integral Now we can evaluate: \[ I = \frac{1}{2} \int_0^1 t^{-5} \, dt = \frac{1}{2} \left[ \frac{t^{-4}}{-4} \right]_0^1. \] This gives: \[ = \frac{1}{2} \left( -\frac{1}{4} (1 - 0) \right) = -\frac{1}{8}. \] ### Final Answer Thus, the value of the integral is: \[ I = -\frac{1}{8}. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int_(pi//3)^(pi//2) (sqrt(1+cosx))/((1-cosx)^(5//2))\ dx

Evaluate the following integral: int_(pi//3)^(pi//2)(sqrt(1+cosx))/((1-cosx)^(3//2))dx

Knowledge Check

  • int(sqrt(1+cosx))/(1-cosx)dx=

    A
    `-sqrt2 cosec((x)/(2))+c`
    B
    `sqrt2 cos ((x)/(2))+c`
    C
    `-sqrt2 sec((x)/(2))+c`
    D
    `log[cos((x)/(2))]+c`
  • int(cosx)/(1-cosx)dx=

    A
    `2cot((x)/(2))+x+c`
    B
    `2cot((x)/(2))-x+c`
    C
    `cot((x)/(2))+x+c`
    D
    `-cot((x)/(2))-x+c`
  • int(cosx)/(1+cosx)dx=

    A
    `x+tan((x)/(2))+c`
    B
    `(x)/(2)-tanx+c`
    C
    `x-tan((x)/(2))+c`
    D
    `(x)/(2)+tanx+c`
  • Similar Questions

    Explore conceptually related problems

    int ((1+cosx)/(1-cosx)) dx

    int_0^(pi/2) sqrt(cosx)sinxdx

    int sqrt(1-cosx)dx

    int_(0)^(pi//2)sqrt(1+cosx)dx

    int(1-cosx)/(cosx(1+cosx))dx