Home
Class 12
MATHS
(i) int 1/ (cos^4x+sin^4x)dx (ii) int ...

(i) `int 1/ (cos^4x+sin^4x)dx`
(ii) `int 1/(sin^4x+sin^2x cos^2x+cos^4x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given integrals step by step. ### Part (i): We need to evaluate the integral \[ I = \int \frac{1}{\cos^4 x + \sin^4 x} \, dx. \] **Step 1: Simplifying the denominator** We can rewrite \(\cos^4 x + \sin^4 x\) using the identity: \[ \cos^4 x + \sin^4 x = (\cos^2 x + \sin^2 x)^2 - 2\cos^2 x \sin^2 x = 1 - 2\cos^2 x \sin^2 x. \] Thus, \[ I = \int \frac{1}{1 - 2\cos^2 x \sin^2 x} \, dx. \] **Step 2: Using the double angle identity** Using the identity \(\sin^2 x = \frac{1 - \cos(2x)}{2}\) and \(\cos^2 x = \frac{1 + \cos(2x)}{2}\), we can express \(2\cos^2 x \sin^2 x\) as: \[ 2\cos^2 x \sin^2 x = 2 \cdot \frac{1 + \cos(2x)}{2} \cdot \frac{1 - \cos(2x)}{2} = \frac{1 - \cos^2(2x)}{2} = \frac{\sin^2(2x)}{2}. \] Thus, \[ I = \int \frac{1}{1 - \frac{\sin^2(2x)}{2}} \, dx. \] **Step 3: Further simplification** This can be rewritten as: \[ I = \int \frac{2}{2 - \sin^2(2x)} \, dx. \] **Step 4: Substitution** Let \(u = 2x\), then \(du = 2dx\) or \(dx = \frac{du}{2}\). The integral becomes: \[ I = \int \frac{2}{2 - \sin^2 u} \cdot \frac{du}{2} = \int \frac{1}{2 - \sin^2 u} \, du. \] **Step 5: Using the identity for integration** Now we can use the formula for integrating \(\frac{1}{a - b \sin^2 u}\): \[ \int \frac{1}{a - b \sin^2 u} \, du = \frac{1}{\sqrt{a(a+b)}} \tan^{-1} \left( \sqrt{\frac{b}{a}} \tan u \right) + C. \] In our case, \(a = 2\) and \(b = 1\): \[ I = \frac{1}{\sqrt{2(2+1)}} \tan^{-1} \left( \sqrt{\frac{1}{2}} \tan u \right) + C = \frac{1}{\sqrt{6}} \tan^{-1} \left( \frac{1}{\sqrt{2}} \tan(2x) \right) + C. \] ### Part (ii): Now we evaluate the integral \[ J = \int \frac{1}{\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x} \, dx. \] **Step 1: Simplifying the denominator** We can rewrite \(\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x\) as: \[ \sin^4 x + \cos^4 x + \sin^2 x \cos^2 x = (\sin^2 x + \cos^2 x)^2 - \sin^2 x \cos^2 x = 1 - \sin^2 x \cos^2 x. \] Thus, \[ J = \int \frac{1}{1 - \sin^2 x \cos^2 x} \, dx. \] **Step 2: Using the double angle identity** Using the identity \(\sin^2 x \cos^2 x = \frac{1}{4} \sin^2(2x)\): \[ J = \int \frac{1}{1 - \frac{1}{4} \sin^2(2x)} \, dx. \] **Step 3: Further simplification** This can be rewritten as: \[ J = \int \frac{4}{4 - \sin^2(2x)} \, dx. \] **Step 4: Substitution** Let \(u = 2x\), then \(du = 2dx\) or \(dx = \frac{du}{2}\). The integral becomes: \[ J = \int \frac{4}{4 - \sin^2 u} \cdot \frac{du}{2} = 2 \int \frac{1}{4 - \sin^2 u} \, du. \] **Step 5: Using the identity for integration** Using the formula for integrating \(\frac{1}{a - b \sin^2 u}\): In our case, \(a = 4\) and \(b = 1\): \[ J = 2 \cdot \frac{1}{\sqrt{4(4+1)}} \tan^{-1} \left( \sqrt{\frac{1}{4}} \tan u \right) + C = \frac{2}{\sqrt{20}} \tan^{-1} \left( \frac{1}{2} \tan(2x) \right) + C. \] ### Final Answers: 1. For the first integral: \[ I = \frac{1}{\sqrt{6}} \tan^{-1} \left( \frac{1}{\sqrt{2}} \tan(2x) \right) + C. \] 2. For the second integral: \[ J = \frac{2}{\sqrt{20}} \tan^{-1} \left( \frac{1}{2} \tan(2x) \right) + C. \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INTEGRALS

    MODERN PUBLICATION|Exercise CHECK YOUR UNDERSTANDING|10 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise COMPETITION FILE|24 Videos
  • INTEGRALS

    MODERN PUBLICATION|Exercise EXERCISE|10 Videos
  • DIFFERENTIAL EQUATIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (9)|12 Videos
  • INVERSE - TRIGONOMETRIC FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (2)|11 Videos

Similar Questions

Explore conceptually related problems

int(sin^3x+sin^5x)/(cos^2x+cos^4x)dx

int 1/(sin^2x cos^4x)dx

Knowledge Check

  • int(sin2x)/(cos^4x-sin^4x)dx=

    A
    `(1)/(2)log|cos2x|+c`
    B
    `(1)/(2)log|sec2x|+c`
    C
    `(1)/(4)log|cos2x|+c`
    D
    `(1)/(2)log|sec2x|+c`
  • int (sin 2x)/(sin^4 x + cos^4 x) dx =

    A
    `tan^(-1) (cot^2 x)`
    B
    `tan^(-1) (tan^2 x)`
    C
    `tan^(-1) (sec^2 x)`
    D
    none
  • Similar Questions

    Explore conceptually related problems

    int x cos 2x sin 4x dx

    int_0^pi sin^4x cos^4x dx

    (i) int 1/(4sin^2x+5cos^2x) dx (ii) int (dx)/(cos^2 x+2 sin^2x)

    int sin^4x* cos^3x dx

    Evaluate: int(1)/(sin^(4)x+sin^(2)x cos^(2)x+cos^(4)x)dx

    int(1)/(4sin^(2)x+4sin x cos x+5cos^(2)x)dx