Home
Class 12
MATHS
Find a vector of magnitude 7 units, whic...

Find a vector of magnitude 7 units, which is perpendicular to two vectors :
`2hat(i)-hat(j)+hat(k)` and `hat(i)+hat(j)-hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find a vector of magnitude 7 units that is perpendicular to the vectors \( \mathbf{A} = 2\hat{i} - \hat{j} + \hat{k} \) and \( \mathbf{B} = \hat{i} + \hat{j} - \hat{k} \), we can follow these steps: ### Step 1: Find the Cross Product of Vectors A and B The vector perpendicular to both \( \mathbf{A} \) and \( \mathbf{B} \) can be found using the cross product \( \mathbf{C} = \mathbf{A} \times \mathbf{B} \). \[ \mathbf{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} \] ### Step 2: Calculate the Determinant Calculating the determinant, we expand it as follows: \[ \mathbf{C} = \hat{i} \begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ (-1)(-1) - (1)(1) = 1 - 1 = 0 \] 2. For \( \hat{j} \): \[ (2)(-1) - (1)(1) = -2 - 1 = -3 \] 3. For \( \hat{k} \): \[ (2)(1) - (-1)(1) = 2 + 1 = 3 \] Putting it all together, we have: \[ \mathbf{C} = 0\hat{i} + 3\hat{j} + 3\hat{k} = 3\hat{j} + 3\hat{k} \] ### Step 3: Find the Magnitude of Vector C Now, we need to find the magnitude of vector \( \mathbf{C} \): \[ |\mathbf{C}| = \sqrt{(0)^2 + (3)^2 + (3)^2} = \sqrt{0 + 9 + 9} = \sqrt{18} = 3\sqrt{2} \] ### Step 4: Find the Unit Vector in the Direction of C To find the unit vector \( \hat{C} \): \[ \hat{C} = \frac{\mathbf{C}}{|\mathbf{C}|} = \frac{3\hat{j} + 3\hat{k}}{3\sqrt{2}} = \frac{\hat{j} + \hat{k}}{\sqrt{2}} \] ### Step 5: Find the Required Vector D of Magnitude 7 To find the vector \( \mathbf{D} \) of magnitude 7 in the direction of \( \hat{C} \): \[ \mathbf{D} = 7 \hat{C} = 7 \cdot \frac{\hat{j} + \hat{k}}{\sqrt{2}} = \frac{7}{\sqrt{2}} \hat{j} + \frac{7}{\sqrt{2}} \hat{k} \] ### Final Answer Thus, the vector of magnitude 7 units that is perpendicular to both given vectors is: \[ \mathbf{D} = \frac{7}{\sqrt{2}} \hat{j} + \frac{7}{\sqrt{2}} \hat{k} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Questions From NCERT Exemplar (Example)|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (a) Short Answer Type Questions|21 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find a vector of magnitude 15, which is perpendicular to both the vectors (4hat(i) -hat(j)+8hat(k)) and (-hat(j)+hat(k)).

Find a vector of magnitude 6 which is perpendicular to both the vectors vec(a)= 4 hat(i)-hat(j) + 3 hat(k) and vec(b) = -2 hat(i) + hat(j)- 2 hat(k).

Knowledge Check

  • The two vectors A=2hat(i)+hat(j)+3hat(k) and B=7hat(i)-5hat(j)-3hat(k) are :-

    A
    parallel
    B
    perpendicular
    C
    anti-parallel
    D
    None of these
  • A unit vector perpendicular to each of the vectors 2hat(i) - hat(j) + hat(k ) and 3hat(i) - 4hat(i) - hat(k) is

    A
    `(1)/(sqrt3) hat(i) + (1)/(sqrt3) hat(j) - (1)/(sqrt3) hat(k)`
    B
    `(1)/(sqrt2) hat(i) + (1)/(2) hat(j) + (1)/(2) hat(k)`
    C
    `(1)/(sqrt3) hat(i) - (1)/(sqrt3) hat(j) -(1)/(sqrt3) hat(k)`
    D
    `(1)/(sqrt3) hat(i) + (1)/(3) hat(j) + (1)/(sqrt3) hat(k)`
  • Similar Questions

    Explore conceptually related problems

    Find a vector of magnitude 9, which is perpendicular to both vectors 4hat i-hat j+3hat k and -2hat i+hat j-2hat k

    Find a unit vector perpendicular to both the vectors (2hat(i)+3hat(j)+hat(k)) and (hat(i)-hat(j)-2hat(k)) .

    Find a vector of magnitude 49, which is perpendicular to both the vectors 2hat i+3hat j+6hat k and 3hat i-6hat j+2hat k

    Find a unit vector perpendicular to the plane of two vectors a=hat(i)-hat(j)+2hat(k) and b=2hat(i)+3hat(j)-hat(k) .

    Find a unit vector perpendicular to each of the vectors hat(i)+2hat(j)-3hat(k) and hat(i)-2hat(j)+hat(k) .

    Find a vector of mangitude 18 which is perpendicular to both the vector 4 hat i - hat j + 3 hat k and -2 hat i + hat j -2 hat k .