Home
Class 12
MATHS
What is the area of the rectangle having...

What is the area of the rectangle having vertices A, B, C and D with positive vectors `-hat(i)+(1)/(2) hat(j)+4hat(k), hat(i)+(1)/(2)hat(j)+4hat(k), hat(i)-(1)/(2) hat(j)+4hat(k) and -hat(1)-(1)/(2) hat(j)+4hat(k)`?

A

`(1)/(2)` square unit

B

1 square unit

C

2 square units

D

4 square units

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise COMPETITION FILE|16 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Area of a rectangle having vertices : A (-hat(i)+(1)/(2)hat(j)+4hat(k)), " " B(hat(i)+(1)/(2)hat(j)+4hat(k)) , C(hat(i)-(1)/(2)hat(j)+4hat(k)), " " D(-hat(i)-(1)/(2)hat(j)+4hat(k)) is :

Area of a rectangle having vertices A, B, C and D with position vectors - hat i+1/2 hat j+4 hat k , hat i+1/2 hat j+4 hat k , hat i-1/2 hat j+4 hat k and - hat i-1/2 hat j+4 hat k respectively is (A) 1/2 (B) 1 (C) 2 (D) 4

Show that the vectors hat(i)-3hat(j)+4hat(k),2hat(i)-hat(j)+2hat(k)and 4hat(i)-7hat(j)+10hat(k) are coplanar.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If [[hat(i)+4hat(j)+6hat(k), 2hat(i)+ahat(j)+3hat(k), hat(i)+2hat(j)-3hat(k)]]=0 then a=

Show that the four points A, B, C and D with position vectors 4hat(i)+5hat(j)+hat(k), -(hat(j)+hat(k)),3hat(i)+9hat(j)+4hat(k) and 4(-hat(i)+hat(j)+hat(k)) respectively are coplanar.

Show that the following vectors are coplanar : -2hat(i)-2hat(j)+4hat(k), -2hat(i)+4hat(j)-2hat(k), 4hat(i)-2hat(k) and hat(i)-hat(j)+hat(k) .

Show that the following vectors are coplanar : 3hat(i)-2hat(j)+4hat(k), 6hat(i)+3hat(j)+2hat(k), 5hat(i)+7hat(j)+3hat(k) and 2hat(i)+2hat(j)+5hat(k) .

Show that the points A,B,C with position vectors (3hat(i)- 2 hat(j)+ 4hat(k)),(hat(i) + hat(j) +hat(k)) and (-hat(i)+ 4 hat(j)- 2 hat(k)) respectively are collinear.