Home
Class 12
MATHS
If vec(a), vec(b), vec(c ), vec(d) respe...

If `vec(a), vec(b), vec(c ), vec(d)` respectively, are position vectors representing the vertices A, B, C, D of a parallelogram, then write `vec(d)` in terms of `vec(a), vec(b)` and `vec(c )`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the position vector \(\vec{d}\) in terms of the position vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) for the vertices \(A\), \(B\), \(C\), and \(D\) of a parallelogram, we can follow these steps: ### Step 1: Understand the properties of a parallelogram In a parallelogram, the diagonals bisect each other. This means that the midpoint of diagonal \(AC\) is the same as the midpoint of diagonal \(BD\). ### Step 2: Write the midpoint of diagonal \(AC\) The midpoint \(O\) of diagonal \(AC\) can be expressed using the position vectors of points \(A\) and \(C\): \[ \vec{O} = \frac{\vec{a} + \vec{c}}{2} \] ### Step 3: Write the midpoint of diagonal \(BD\) Similarly, the midpoint \(O\) of diagonal \(BD\) can be expressed using the position vectors of points \(B\) and \(D\): \[ \vec{O} = \frac{\vec{b} + \vec{d}}{2} \] ### Step 4: Set the two expressions for \(O\) equal to each other Since both expressions represent the same point \(O\), we can set them equal: \[ \frac{\vec{a} + \vec{c}}{2} = \frac{\vec{b} + \vec{d}}{2} \] ### Step 5: Eliminate the fraction To eliminate the fraction, multiply both sides by 2: \[ \vec{a} + \vec{c} = \vec{b} + \vec{d} \] ### Step 6: Solve for \(\vec{d}\) Now, we can rearrange the equation to express \(\vec{d}\) in terms of \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\): \[ \vec{d} = \vec{a} + \vec{c} - \vec{b} \] ### Final Result Thus, the position vector \(\vec{d}\) can be expressed as: \[ \vec{d} = \vec{a} + \vec{c} - \vec{b} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (d) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Short Answer Type Questions|28 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (c ) Long Answer Type Questions (II)|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If vec a,vec b,vec c are the position vectors of the vertices of an equilateral triangle whose orthocentre is t the origin,then write the value of vec a+vec b+vec *

Let vec a,vec b,vec c,vec d be the position vectors of the four distinct points A,B,C,D. If vec b-vec a=vec a-vec d, then show that ABCD is parallelogram.

Knowledge Check

  • If vec(a), vec(b), vec(c) are the position vectors of corners A, B, C or a parallelogram ABCD, then what is the position vector of the corner D?

    A
    `vec(a)+vec(b)+vec(c)`
    B
    `vec(a)+vec(b)-vec(c)`
    C
    `vec(a)-vec(b)+vec(c)`
    D
    `-vec(a)+vec(b)+vec(c)`
  • If vec(a), vec(b), vec(c ) are the position vectors of corners A, B, C of a parallelogram ABCD. Then what is the position vector of the corner D?

    A
    A) `vec(a) +vec(b)+ vec(c )`
    B
    B) `vec(a) +vec(b) - vec(c )`
    C
    C) `vec(a)- vec(b) +vec(c )`
    D
    D) `-vec(a) +vec(b) +vec(c )`
  • If vec a , vec b , vec c and vec d are the position vectors of points A, B, C, D such that no three of them are collinear and vec a + vec c = vec b + vec d , then ABCD is a

    A
    rhombus
    B
    rectangle
    C
    square
    D
    parallelogram
  • Similar Questions

    Explore conceptually related problems

    The diagonals of the parallelogram ABCD intersect at E. If vec a,vec b,vec c and vec a be the position vectors of its vertices with respect to an arbitrary origin O, then show that vec a+vec b+vec c+vec d=4 vec(OE) .

    If vec a,vec b,vec c and vec d are the position vectors of the vertices of a cyclic quadrilateral ABCD prove that (|vec a xxvec b+vec b xxvec d+vec d xxvec a|)/((vec b-vec a)*(vec d-vec a))+(|vec b xxvec c+vec c xxvec d+vec d xxvec b|)/((vec b-vec c)*(vec d-vec c))=

    The vectors vec a,vec b,vec c,vec d are coplanar then

    If vec a,vec b,vec c are position vectors o the point A,B, and C respectively,write the value of vec AB+vec BC+vec AC

    If vec a , vec b , vec c , vec d are the position vector of point A , B , C and D , respectively referred to the same origin O such that no three of these point are collinear and vec a + vec c = vec b + vec d , than prove that quadrilateral A B C D is a parallelogram.