Home
Class 12
MATHS
Find the angle between the vectors : ...

Find the angle between the vectors :
`vec(a)=hat(i)+hat(j)-hat(k) " and " vec(b)=hat(i)-hat(j)+hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \(\vec{a} = \hat{i} + \hat{j} - \hat{k}\) and \(\vec{b} = \hat{i} - \hat{j} + \hat{k}\), we can use the formula for the cosine of the angle \(\theta\) between two vectors: \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} \] ### Step 1: Calculate the dot product \(\vec{a} \cdot \vec{b}\) The dot product of two vectors \(\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}\) and \(\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}\) is given by: \[ \vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3 \] For our vectors: - \(\vec{a} = 1 \hat{i} + 1 \hat{j} - 1 \hat{k}\) (where \(a_1 = 1\), \(a_2 = 1\), \(a_3 = -1\)) - \(\vec{b} = 1 \hat{i} - 1 \hat{j} + 1 \hat{k}\) (where \(b_1 = 1\), \(b_2 = -1\), \(b_3 = 1\)) Now, calculate the dot product: \[ \vec{a} \cdot \vec{b} = (1)(1) + (1)(-1) + (-1)(1) = 1 - 1 - 1 = -1 \] ### Step 2: Calculate the magnitudes \(|\vec{a}|\) and \(|\vec{b}|\) The magnitude of a vector \(\vec{v} = v_1 \hat{i} + v_2 \hat{j} + v_3 \hat{k}\) is given by: \[ |\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2} \] For \(\vec{a}\): \[ |\vec{a}| = \sqrt{1^2 + 1^2 + (-1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3} \] For \(\vec{b}\): \[ |\vec{b}| = \sqrt{1^2 + (-1)^2 + 1^2} = \sqrt{1 + 1 + 1} = \sqrt{3} \] ### Step 3: Substitute values into the cosine formula Now we can substitute the values into the cosine formula: \[ \cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{-1}{\sqrt{3} \cdot \sqrt{3}} = \frac{-1}{3} \] ### Step 4: Find the angle \(\theta\) To find \(\theta\), we take the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{-1}{3}\right) \] This gives us the angle between the two vectors. ### Final Answer The angle between the vectors \(\vec{a}\) and \(\vec{b}\) is: \[ \theta = \cos^{-1}\left(-\frac{1}{3}\right) \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (I)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (d) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

If 'theta' is the angle between the vectors : vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) , find sin theta .

Find the sine of the angle between the vectors vec(a) =(2 hat(i) - hat(j) + 3 hat(k)) and vec(b) = (hat(i) + 3 hat(j) + 2 hat(k)).

Knowledge Check

  • The angle between the vectors : vec(a)=hat(i)+2hat(j)-3hat(k) and 3hat(i)-hat(j)+2hat(k) is :

    A
    `cos^(-1)((5)/(14))`
    B
    `cos^(-1)((9)/(14))`
    C
    `cos^(-1)(-(5)/(14))`
    D
    None of these
  • Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

    A
    Parallel
    B
    Antiparallel
    C
    Perpendicular
    D
    at acute angle with each other
  • Determine a vector product of vec(A)=hat(i)+hat(j)+hat(k)and vec(B)=-3hat(i)+hat(j)+hat(k)

    A
    `3hat(i)-hat(j)+4hat(k)`
    B
    `-3hat(i)+hat(j)+4hat(k)`
    C
    `3hat(i)+hat(j)-4hat(k)`
    D
    `-3hat(i)-hat(j)+4hat(k)`
  • Similar Questions

    Explore conceptually related problems

    Find the vector of magnitude 3, bisecting the angle between the vectors vec a=2hat i+hat j-hat k and vec b=hat i-2hat j+hat k

    Find the unit vectors perpendicular to the plane of the vectors vec(a) = 2 hat(i) - 6 hat(j)- 3 hat(k) and vec(b)= 4 hat(i) + 3 hat(j) - hat(k).

    Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

    Find the area of the parallelogram whose adjacent sides are represented by the vectors (i) vec(a)=hat(i) + 2 hat(j)+ 3 hat(k) and vec(b)=-3 hat(i)- 2 hat(j) + hat(k) (ii) vec(a)=(3 hat(i)+hat(j) + 4 hat(k)) and vec(b)= ( hat(i)- hat(j) + hat(k)) (iii) vec(a) = 2 hat(i)+ hat(j) +3 hat(k) and vec(b)= hat(i)-hat(j) (iv) vec(b)= 2 hat(i) and vec(b) = 3 hat(j).

    Find the projection of vec(a) = 2 hat(i) - hat(j) + hat(k) on vec(b) = hat(i) - 2 hat(j) + hat(k) .