Home
Class 12
MATHS
Consider A(2, 3, 4), B(4, 3,2) and C(5,...

Consider `A(2, 3, 4), B(4, 3,2)` and `C(5,2,-1)` be any three points.
(a) Find the projection of `vec(BC )` on `vec(AB)`.
(b) Find the area of triangle ABC.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem step by step, we will break it down into two parts as specified in the question. ### Part (a): Find the projection of \( \vec{BC} \) on \( \vec{AB} \) 1. **Determine the coordinates of points A, B, and C**: - \( A(2, 3, 4) \) - \( B(4, 3, 2) \) - \( C(5, 2, -1) \) 2. **Find the vectors \( \vec{AB} \) and \( \vec{BC} \)**: - \( \vec{AB} = \vec{B} - \vec{A} = (4 - 2, 3 - 3, 2 - 4) = (2, 0, -2) \) - \( \vec{BC} = \vec{C} - \vec{B} = (5 - 4, 2 - 3, -1 - 2) = (1, -1, -3) \) 3. **Calculate the magnitude of \( \vec{AB} \)**: \[ |\vec{AB}| = \sqrt{(2)^2 + (0)^2 + (-2)^2} = \sqrt{4 + 0 + 4} = \sqrt{8} \] 4. **Find the dot product \( \vec{BC} \cdot \vec{AB} \)**: \[ \vec{BC} \cdot \vec{AB} = (1)(2) + (-1)(0) + (-3)(-2) = 2 + 0 + 6 = 8 \] 5. **Calculate the projection of \( \vec{BC} \) on \( \vec{AB} \)**: \[ \text{Projection of } \vec{BC} \text{ on } \vec{AB} = \frac{\vec{BC} \cdot \vec{AB}}{|\vec{AB}|} = \frac{8}{\sqrt{8}} = \sqrt{8} \] ### Part (b): Find the area of triangle ABC 1. **Use the formula for the area of triangle formed by two vectors**: \[ \text{Area} = \frac{1}{2} |\vec{AB} \times \vec{BC}| \] 2. **Set up the determinant for the cross product \( \vec{AB} \times \vec{BC} \)**: \[ \vec{AB} = (2, 0, -2), \quad \vec{BC} = (1, -1, -3) \] \[ \vec{AB} \times \vec{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & -2 \\ 1 & -1 & -3 \end{vmatrix} \] 3. **Calculate the determinant**: - Expanding the determinant: \[ = \hat{i} \begin{vmatrix} 0 & -2 \\ -1 & -3 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -2 \\ 1 & -3 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 0 \\ 1 & -1 \end{vmatrix} \] \[ = \hat{i} (0 \cdot -3 - (-2) \cdot -1) - \hat{j} (2 \cdot -3 - (-2) \cdot 1) + \hat{k} (2 \cdot -1 - 0 \cdot 1) \] \[ = \hat{i} (0 - 2) - \hat{j} (-6 + 2) + \hat{k} (-2) \] \[ = -2\hat{i} + 4\hat{j} - 2\hat{k} \] 4. **Find the magnitude of the cross product**: \[ |\vec{AB} \times \vec{BC}| = \sqrt{(-2)^2 + 4^2 + (-2)^2} = \sqrt{4 + 16 + 4} = \sqrt{24} = 2\sqrt{6} \] 5. **Calculate the area of triangle ABC**: \[ \text{Area} = \frac{1}{2} |\vec{AB} \times \vec{BC}| = \frac{1}{2} \cdot 2\sqrt{6} = \sqrt{6} \] ### Final Answers: - (a) The projection of \( \vec{BC} \) on \( \vec{AB} \) is \( \sqrt{8} \). - (b) The area of triangle ABC is \( \sqrt{6} \) square units.
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (f) Short Answer Type Questions|11 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Short Answer Type Questions|3 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (I)|25 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

The points A(2,3), B(4,-1) and C(-1,2) are the vertices of A ABC. Find the length of perpendicular from C on AB and hence find the area of triangle ABC .

If |vec a|=2,|vec b|=3 and vec avec b=3 find the projection of vec b on vec a

A (6,3,2),B(4,1,4),C(3,-4,7) and D(0,2,5) are four given points. Find the projection of AB on CD and projection of CD on AB.

The points A(4,5,10),B(2,3,4) and C(1,2,-1) are three vertices of a parallelogram ABCD. Find the vector equations of the sides AB and BC and also find the coordinates of point D.

In a triangle ABC if vecabs(AB)=7 ,vecabs(BC)=5 ,and vecabs(CA)=3. . If the projection of vec(BC) on vec(CA) is n/2 , then the value of n is

If A(8,2,0),B(4,6,-7),C(-3,1,2)and D(-9,-2,4) are four given point then find the angle between vec(AB)and vec(CD) .

The position vectors of the points A and B are vec i + 2 vec j + 3 vec k and 2 vec i - vec j - vec k respectively. Find the projection of vec (AB) on the vector vec i + vec j + vec k . Also find the resolved part of vec (AB) in that direction.

If three points are A(-2,1)B(2,3), and C(-2,-4), then find the angle between AB and BC .

Find a unit vector in the direction of vec(AB) , where A(1, 2, 3) and B( 2, 3, 5) are the given points.

If D(3,-2) , E(-3,1) and F(4,-3) are the mid-points of the sides BC, CA and AB respectively of Delta ABC , find the co-ordinates of point A , B and C .