Home
Class 12
MATHS
Find the angle between two vectors vec(a...

Find the angle between two vectors `vec(a)` and `vec(b)` such that :
`|vec(a)|=sqrt(3), |vec(b)|=2` and `vec(a).vec(b)=sqrt(6)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle \( \theta \) between the two vectors \( \vec{a} \) and \( \vec{b} \), we can use the formula for the dot product of two vectors: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] ### Step 1: Substitute the known values into the dot product formula. We know: - \( |\vec{a}| = \sqrt{3} \) - \( |\vec{b}| = 2 \) - \( \vec{a} \cdot \vec{b} = \sqrt{6} \) Substituting these values into the dot product formula gives us: \[ \sqrt{6} = (\sqrt{3})(2) \cos \theta \] ### Step 2: Simplify the equation. Calculating the right-hand side: \[ \sqrt{6} = 2\sqrt{3} \cos \theta \] ### Step 3: Isolate \( \cos \theta \). To isolate \( \cos \theta \), divide both sides by \( 2\sqrt{3} \): \[ \cos \theta = \frac{\sqrt{6}}{2\sqrt{3}} \] ### Step 4: Simplify \( \frac{\sqrt{6}}{2\sqrt{3}} \). We can simplify this expression: \[ \cos \theta = \frac{\sqrt{6}}{2\sqrt{3}} = \frac{\sqrt{6}}{\sqrt{12}} = \frac{\sqrt{6}}{\sqrt{4 \cdot 3}} = \frac{\sqrt{6}}{2\sqrt{3}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \] ### Step 5: Find \( \theta \). Now, we can find \( \theta \) by taking the inverse cosine: \[ \theta = \cos^{-1}\left(\frac{\sqrt{2}}{2}\right) \] ### Step 6: Calculate the angle. The angle whose cosine is \( \frac{\sqrt{2}}{2} \) is: \[ \theta = 45^\circ \text{ or } \frac{\pi}{4} \text{ radians} \] ### Final Answer: The angle between the two vectors \( \vec{a} \) and \( \vec{b} \) is \( 45^\circ \) or \( \frac{\pi}{4} \) radians. ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (I)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (d) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the angle between vec(a) and vec(b) such that : |vec(a)|=sqrt(2), |vec(b)|=2 and vec(a).vec(b)=sqrt(6) .

Find the angle between two vectors vec a and vec b, if |vec a xxvec b|=vec avec b

Find the angle between two vectors vec a and vec b, if |vec a xxvec b|=vec a*vec b

Find the angle between two vectors vec a and vec b,quad if :|vec a|=3,|vec b|=3 and vec avec b=1

Find the angle between vec(a) and vec(b) , when (i) |vec(a)|=2, |vec(b)|=1 and vec(A).vec(B)=sqrt(3) (ii) |vec(a)|=|vec(b)|=sqrt(2) and vec(a).vec(b)=-1 .

Find the angle between two vectors vec(a) and vec(b) with magnitudes 1 and 2 respectively and |vec(a) xx vec(b)|= sqrt(3).

Find the angle between two vectors vec a and vec b with magnitudes sqrt(3) and 2 respectively and such that vec a.vec b=sqrt(6)

If the angle between the vectors vec(a) and vec(b) is (pi)/(3) , what is the angle between -5vec(a) and 6 vec(b) ?

Writhe the angle between two vectors vec a and vec b backslash with magnitudes sqrt(3) and 2 repsectively having vec avec b=sqrt(6)

Two vectors vec(a) and vec(b) are such that |vec(a)+vec(b)|=|vec(a)-vec(b)| . What is the angle between vec(a) and vec(b) ?

MODERN PUBLICATION-VECTOR ALGEBRA -EXERCISE 10 (e ) Short Answer Type Questions
  1. Find the angle between the vectors : vec(a)=2hat(i)-hat(j)+2hat(k...

    Text Solution

    |

  2. What is the cosine of the angle which the vector sqrt(2) hat i+ hat j+...

    Text Solution

    |

  3. Find the angle between two vectors vec(a) and vec(b) such that : ...

    Text Solution

    |

  4. Find the angle between two vectors vec a and vec b with magnitudes 1 a...

    Text Solution

    |

  5. Find the magnitude of two vectors -> aand -> bhaving the same magni...

    Text Solution

    |

  6. If vec adot vec a=0 and vec adot vec b=0, what can you conclude abou...

    Text Solution

    |

  7. If either vector -> a= ->0 or -> b= ->0 , then -> adot -> b=0...

    Text Solution

    |

  8. Find the scalar projection of : vec(a)=7hat(i)+hat(j)-4hat(k) on v...

    Text Solution

    |

  9. Find the scalar projection of : vec(a)=3hat(i)-2hat(j)+hat(k) on ...

    Text Solution

    |

  10. Find the scalar projection of : vec(a)=2hat(i)+3hat(j)+2hat(k) on ...

    Text Solution

    |

  11. Find the scalar projection of : vec(a)=hat(i)-hat(j) on vec(b)=hat...

    Text Solution

    |

  12. Find the scalar projection of : vec(a)=hat(i)+3hat(j)+7hat(k) on ...

    Text Solution

    |

  13. Find the scalar projection of vec(b) on vec(a), when : vec(a)=2hat(...

    Text Solution

    |

  14. Find the scalar projection of vec(b) on vec(a), when : vec(a)=2hat(...

    Text Solution

    |

  15. Find the vector projection of the vector : 7hat(i)+hat(j)-hat(k) ...

    Text Solution

    |

  16. Find the vector projection of the vector : 2hat(i)-hat(j)+hat(k) ...

    Text Solution

    |

  17. Find lambda, when the projection of vec a=lambda hat i+ hat j+4 hat k...

    Text Solution

    |

  18. Show that the vector vec a=1/7(2 hat i+3 hat j+6 hat k),\ vec b=1/7(...

    Text Solution

    |

  19. If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k), t...

    Text Solution

    |

  20. If vec(a)=hat(i)+2hat(j)-3hat(k) and vec(b)=3hat(i)-hat(j)+2hat(k), t...

    Text Solution

    |