Home
Class 12
MATHS
Find the scalar projection of : vec(...

Find the scalar projection of :
`vec(a)=2hat(i)+3hat(j)+2hat(k)` on `vec(b)=hat(i)+2hat(j)+hat(k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the scalar projection of vector \(\vec{a}\) on vector \(\vec{b}\), we will follow these steps: ### Step 1: Identify the vectors Given: \[ \vec{a} = 2\hat{i} + 3\hat{j} + 2\hat{k} \] \[ \vec{b} = \hat{i} + 2\hat{j} + \hat{k} \] ### Step 2: Calculate the dot product \(\vec{a} \cdot \vec{b}\) The dot product of two vectors \(\vec{a} = a_1\hat{i} + a_2\hat{j} + a_3\hat{k}\) and \(\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}\) is given by: \[ \vec{a} \cdot \vec{b} = a_1b_1 + a_2b_2 + a_3b_3 \] For our vectors: \[ \vec{a} \cdot \vec{b} = (2)(1) + (3)(2) + (2)(1) = 2 + 6 + 2 = 10 \] ### Step 3: Calculate the magnitude of vector \(\vec{b}\) The magnitude of vector \(\vec{b}\) is given by: \[ |\vec{b}| = \sqrt{b_1^2 + b_2^2 + b_3^2} \] Calculating for \(\vec{b}\): \[ |\vec{b}| = \sqrt{(1)^2 + (2)^2 + (1)^2} = \sqrt{1 + 4 + 1} = \sqrt{6} \] ### Step 4: Calculate the scalar projection of \(\vec{a}\) on \(\vec{b}\) The scalar projection of \(\vec{a}\) on \(\vec{b}\) is given by: \[ \text{Scalar Projection} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \] Substituting the values we found: \[ \text{Scalar Projection} = \frac{10}{\sqrt{6}} \] ### Final Answer Thus, the scalar projection of vector \(\vec{a}\) on vector \(\vec{b}\) is: \[ \frac{10}{\sqrt{6}} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (I)|25 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (e ) Long Answer Type Questions (II)|4 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (d) Long Answer Type Questions (II)|1 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the scalar projection of : vec(a)=3hat(i)-2hat(j)+hat(k) on vec(b)=hat(i)-2hat(j)-3hat(k)

Find the scalar projection of : vec(a)=7hat(i)+hat(j)-4hat(k) on vec(b)=2hat(i)+6hat(j)+3hat(k)

Knowledge Check

  • What is the projection of vec(a)=(2hat(i)-hat(j)+hat(k)) on vec(b)=(hat(i)-2hat(j)+hat(k))?

    A
    `(2)/(sqrt(3))`
    B
    `(4)/(sqrt(5))`
    C
    `(5)/(sqrt(6))`
    D
    none of these
  • Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

    A
    Parallel
    B
    Antiparallel
    C
    Perpendicular
    D
    at acute angle with each other
  • Similar Questions

    Explore conceptually related problems

    Find the projection of vec(a) = 2 hat(i) - hat(j) + hat(k) on vec(b) = hat(i) - 2 hat(j) + hat(k) .

    Find the scalar projection of : vec(a)=hat(i)-hat(j) on vec(b)=hat(i)+hat(j)

    Find the scalar projection of vec(b) on vec(a) , when : vec(a)=2hat(i)+hat(j)+2hat(k) and vec(b)=hat(i)+2hat(j)+hat(k) .

    Find the scalar projection of vec(b) on vec(a) , when : vec(a)=2hat(i)+2hat(j)-hat(k) and vec(b)=2hat(i)-hat(j)-4hat(k)

    Find the scalar and vector products of two vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)) and vec(b)(hat(i)-2hat(j)+3hat(k)) .

    Find the unit vector in the direction of vec(a)-vec(b) , where : vec(a)=hat(i)+3hat(j)-hat(k), vec(b)=3hat(i)+2hat(j)+hat(k) .