Home
Class 12
MATHS
Find vec(a).(vec(b)xx vec(c )) if : ve...

Find `vec(a).(vec(b)xx vec(c ))` if :
`vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k)` and `vec(c )=3hat(i)+hat(j)+2hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the scalar triple product \(\vec{a} \cdot (\vec{b} \times \vec{c})\), we can use the determinant method. The scalar triple product can be represented as the determinant of a matrix formed by the components of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). ### Step 1: Write down the vectors Given: \[ \vec{a} = 2\hat{i} + \hat{j} + 3\hat{k} \] \[ \vec{b} = -\hat{i} + 2\hat{j} + \hat{k} \] \[ \vec{c} = 3\hat{i} + \hat{j} + 2\hat{k} \] ### Step 2: Set up the determinant The scalar triple product \(\vec{a} \cdot (\vec{b} \times \vec{c})\) can be calculated using the determinant: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = \begin{vmatrix} 2 & 1 & 3 \\ -1 & 2 & 1 \\ 3 & 1 & 2 \end{vmatrix} \] ### Step 3: Calculate the determinant We can calculate the determinant using the formula: \[ \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a(ei - fh) - b(di - fg) + c(dh - eg) \] Applying this to our determinant: \[ = 2 \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} - 1 \begin{vmatrix} -1 & 1 \\ 3 & 2 \end{vmatrix} + 3 \begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = (2 \cdot 2) - (1 \cdot 1) = 4 - 1 = 3\) 2. \(\begin{vmatrix} -1 & 1 \\ 3 & 2 \end{vmatrix} = (-1 \cdot 2) - (1 \cdot 3) = -2 - 3 = -5\) 3. \(\begin{vmatrix} -1 & 2 \\ 3 & 1 \end{vmatrix} = (-1 \cdot 1) - (2 \cdot 3) = -1 - 6 = -7\) Now substituting back: \[ = 2(3) - 1(-5) + 3(-7) \] \[ = 6 + 5 - 21 \] \[ = 11 - 21 = -10 \] ### Final Answer Thus, the value of \(\vec{a} \cdot (\vec{b} \times \vec{c})\) is \(-10\). ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find [vec(a)vec(b)vec(c)] , when (i) vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c)=3hat(i)+hat(j)+2hat(k) (ii) vec(a)=2hat(i)-3hat(j)+4hat(k), vec(b)=hat(i)+2hat(j)-hat(k) and vec(c)=3hat(i)-hat(j)+2hat(k) (iii) vec(a) = 2 hat(i)-3hat(j), vec(b)=hat(i)+hat(j)-hat(k) and vec(c)=3hat(i)-hat(k)

Find [vec(a)vec(b)vec(c )] if vec(a)=vec(i)-2hat(j)+3hat(k), vec(b)=2hat(i)-3hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)-2hat(k) .

Knowledge Check

  • vec(A)=hat(j)-2hat(i)+3hat(k) " , "vec(B)= hat(i)+2hat(j)+2hat(k) find vec(A).vec(B)

    A
    3
    B
    6
    C
    -3
    D
    -6
  • Similar Questions

    Explore conceptually related problems

    verify that vec(a) xx (vec(b)+ vec(c))=(vec(a) xx vec(b))+(vec(a) xx vec(c)) , "when" (i) vec(a)= hat(i)- hat(j)-3 hat(k), vec(b)= 4 hat(i)-3 hat(j) + hat(k) and vec(c)= 2 hat(i) - hat(j) + 2 hat(k) (ii) vec(a)= 4 hat(i)-hat(j)+hat(k), vec(b)= hat(i)+hat(j)+ hat(k) and vec(c)= hat(i)- hat(j)+hat(k).

    Find |vec(a)xx vec(b)| , if vec(a)=2hat(i)+hat(j)+3hat(k) and vec(b)=3hat(i)+5hat(j)-2hat(k) .

    Show that the vectors vec(a), vec(b), vec(c) are coplanar, when (i) vec(a)=hat(i)-2hat(j)+3hat(k), vec(b) = -2hat(i)+3hat(j)-4hat(k) and vec(c)=hat(i)-3hat(j)+5hat(k) (ii) vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k)and vec(c)=7hat(j)+3hat(k) (iii) vec(a)=2hat(i)-hat(j)+2hat(k), vec(b)=hat(i)+2hat(j)-3hat(k) and vec(c)=3hat(i)-4hat(j)+7hat(k)

    If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

    Find vec(A).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=3 hat(i)-4 hat(j)-2 hat(k) (ii) vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=-2hat(j)+4hat(k) (iii) vec(a)=hat(i)-hat(j)+5hat(k) and vec(b)=3 hat(i)-2 hat(k)

    Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) + hat(k), vec(c) = 3hat(i) + 2hat(j) + hat(k) and vec(d) = 3hat(i) - hat(j) - 2hat(k) , then . Find the value of (vec(a) xx vec(b)) xx (vec(a) xx vec(b)).vec(d)

    Let vec(a) = hat(i) + 2hat(j) + 3hat(k) , vec(b) = 2hat(i) + hat(j) + hat(k), vec(c) = 3hat(i) + 2hat(j) + hat(k) and vec(d) = 3hat(i) - hat(j) - 2hat(k) , then . If vec(a) xx (vec(b) xx vec(c)) = pvec(a) + qvec(b) + rvec(c) , then find value of p,q are r.