Home
Class 12
MATHS
A force vec(F)=4hat(i)+hat(k) acts throu...

A force `vec(F)=4hat(i)+hat(k)` acts through point A (0, 2, 0). Find the moment `vec(m)` of `vec(F)` about the point B (4, 0, 4).

Text Solution

AI Generated Solution

The correct Answer is:
To find the moment \(\vec{m}\) of the force \(\vec{F}\) about the point B, we will follow these steps: ### Step 1: Identify the given information We have: - Force vector: \(\vec{F} = 4\hat{i} + \hat{k}\) - Point A: \(A(0, 2, 0)\) - Point B: \(B(4, 0, 4)\) ### Step 2: Find the position vector \(\vec{r}\) The position vector \(\vec{r}\) from point A to point B is given by: \[ \vec{r} = \vec{B} - \vec{A} \] Calculating the components: \[ \vec{A} = 0\hat{i} + 2\hat{j} + 0\hat{k} = 0\hat{i} + 2\hat{j} + 0\hat{k} \] \[ \vec{B} = 4\hat{i} + 0\hat{j} + 4\hat{k} \] Thus, \[ \vec{r} = (4\hat{i} + 0\hat{j} + 4\hat{k}) - (0\hat{i} + 2\hat{j} + 0\hat{k}) = 4\hat{i} - 2\hat{j} + 4\hat{k} \] ### Step 3: Calculate the moment \(\vec{m}\) The moment \(\vec{m}\) of the force about point B is given by the cross product: \[ \vec{m} = \vec{r} \times \vec{F} \] Substituting the values of \(\vec{r}\) and \(\vec{F}\): \[ \vec{m} = (4\hat{i} - 2\hat{j} + 4\hat{k}) \times (4\hat{i} + 0\hat{j} + 1\hat{k}) \] ### Step 4: Set up the determinant for the cross product Using the determinant method: \[ \vec{m} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -2 & 4 \\ 4 & 0 & 1 \end{vmatrix} \] ### Step 5: Calculate the determinant Calculating the determinant: \[ \vec{m} = \hat{i} \begin{vmatrix} -2 & 4 \\ 0 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & 4 \\ 4 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & -2 \\ 4 & 0 \end{vmatrix} \] Calculating each of the minors: 1. For \(\hat{i}\): \[ \begin{vmatrix} -2 & 4 \\ 0 & 1 \end{vmatrix} = (-2)(1) - (4)(0) = -2 \] 2. For \(\hat{j}\): \[ \begin{vmatrix} 4 & 4 \\ 4 & 1 \end{vmatrix} = (4)(1) - (4)(4) = 4 - 16 = -12 \] 3. For \(\hat{k}\): \[ \begin{vmatrix} 4 & -2 \\ 4 & 0 \end{vmatrix} = (4)(0) - (-2)(4) = 0 + 8 = 8 \] ### Step 6: Combine the results Putting it all together: \[ \vec{m} = -2\hat{i} + 12\hat{j} + 8\hat{k} \] ### Final Answer Thus, the moment \(\vec{m}\) of the force \(\vec{F}\) about point B is: \[ \vec{m} = -2\hat{i} + 12\hat{j} + 8\hat{k} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Short Answer Type Questions|17 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Short Answer Type Questions|3 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

A force vec(F)=3hat(i)+2hat(j)-4hat(k) is applied at the point (1, -1, 2) . Find the moment of vec(F) about the point (2, -1, 3) .

A force vec F = 3 vec i + 2 vec j - 4 vec k is acting at the point (1,-1, 2) . Find the vector moment of vec F about the point (2,-1,3) .

Knowledge Check

  • A force vec(F) = 3 hat(i) + 2hat(j) - 4hat(k) is applied at the point (1, -1, 2) . What is the moment of the force about the point (2 , -1, 3) ?

    A
    `hat(i)+ 4hat(j) + 4hat(k)`
    B
    `2hat(i) + hat(j) + 2hat(k)`
    C
    `2hat(i) - 7hat(j) -2hat(k)`
    D
    `2hat(i) + 4hat(j) + hat(k)`
  • What is the magnitude of the moment of the couple consisting of the force vec(F)=3 hat(i)+2hat(j)-hat(k) acting through the point hat(i)-hat(j)+hat(k) and -vec(F) acting through the point 2hat(i)-3hat(j)-hat(k) ?

    A
    `2sqrt(5)`
    B
    `3sqrt(5)`
    C
    `5sqrt(5)`
    D
    `7sqrt(5)`
  • A force vec(F) = 4hat(i) + 3hat(j) - 2hat(k) is passing through the origin. Its moment about point (1,1,0) is

    A
    `-hat(i) + hat(j) + hat(k)`
    B
    zero
    C
    `2hat(i) + 3hat(j)`
    D
    `2hat(i) + 2hat(j) - hat(k)`
  • Similar Questions

    Explore conceptually related problems

    Let vec(F)=2hat(i)+4hat(j)+3hat(k) at the point P with position vector hat(i)-hat(j)+3hat(k) . Find the moment of vec(F) about the line through the origin O in the direction of the vector vec(a)=hat(i)+2hat(j)+2hat(k) .

    Two forces vec(F)_(1)= 2hat(i) - 5 hat(j) - 6 hat(k) and vec(F)_(2) = - hat(i) + 2 hat(j) - hat(k) are acting on a body at the points (1, 1, 0) and (0, 1, 2) . Find torque acting on the body about point (- 1, 0, 1)

    Find the torque of the force vec(F)=(2hat(i)-3hat(j)+4hat(k)) N acting at the point vec(r )=(3hat(i)=2hat(j)+3hat(k)) m about the origion.

    A force vec(F) = (2 hat(i) + 3 hat(j) + 4 hat(k)) N is applied to a point having position vector vec(r) = (3 hat(i) + 2 hat(j) + hat(k)) m. Find the torque due to the force about the axis passing through origin.

    A force vec(F)=3hat(i)+4 hat(j)-3hat(k) is applied at the point P, whose position vector is vec(r) = hat(2i)-2hat(j)-3hat(k) . What is the magnitude of the moment of the force about the origin ?