Home
Class 12
MATHS
For what value of 'lambda' are the follo...

For what value of `'lambda'` are the following vectors coplanar ?
`vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k)` and `vec(c )=lambda hat(i)+7hat(j)+3hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the value of \( \lambda \) for which the vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar, we can use the condition that the scalar triple product of the vectors must be zero. The scalar triple product can be calculated using the determinant of a matrix formed by the components of the vectors. ### Step-by-step Solution: 1. **Identify the vectors**: \[ \vec{a} = \hat{i} + 3\hat{j} + \hat{k} \quad \text{(coefficients: 1, 3, 1)} \] \[ \vec{b} = 2\hat{i} - \hat{j} - \hat{k} \quad \text{(coefficients: 2, -1, -1)} \] \[ \vec{c} = \lambda \hat{i} + 7\hat{j} + 3\hat{k} \quad \text{(coefficients: } \lambda, 7, 3\text{)} \] 2. **Set up the determinant**: The scalar triple product can be expressed as: \[ \text{det} \begin{pmatrix} 1 & 3 & 1 \\ 2 & -1 & -1 \\ \lambda & 7 & 3 \end{pmatrix} \] We need to set this determinant equal to zero for coplanarity. 3. **Calculate the determinant**: Expanding the determinant: \[ = 1 \cdot \begin{vmatrix} -1 & -1 \\ 7 & 3 \end{vmatrix} - 3 \cdot \begin{vmatrix} 2 & -1 \\ \lambda & 3 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & -1 \\ \lambda & 7 \end{vmatrix} \] Now calculating each of these 2x2 determinants: - For the first determinant: \[ \begin{vmatrix} -1 & -1 \\ 7 & 3 \end{vmatrix} = (-1)(3) - (-1)(7) = -3 + 7 = 4 \] - For the second determinant: \[ \begin{vmatrix} 2 & -1 \\ \lambda & 3 \end{vmatrix} = (2)(3) - (-1)(\lambda) = 6 + \lambda = 6 + \lambda \] - For the third determinant: \[ \begin{vmatrix} 2 & -1 \\ \lambda & 7 \end{vmatrix} = (2)(7) - (-1)(\lambda) = 14 + \lambda \] 4. **Substituting back into the determinant**: Now substituting back into the determinant: \[ = 1 \cdot 4 - 3(6 + \lambda) + 1(14 + \lambda) \] Simplifying this: \[ = 4 - 18 - 3\lambda + 14 + \lambda \] \[ = 4 - 18 + 14 - 3\lambda + \lambda \] \[ = 0 - 2\lambda \] 5. **Setting the determinant to zero**: For the vectors to be coplanar, we set the expression equal to zero: \[ -2\lambda = 0 \] Solving for \( \lambda \): \[ \lambda = 0 \] ### Conclusion: The value of \( \lambda \) for which the vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are coplanar is: \[ \lambda = 0 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (I)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (j) Long Answer Type Questions (II)|1 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise EXERCISE 10 (i) Long Answer Type Questions (I)|8 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

For what value of 'lambda' are the following vectors coplanar ? vec(a)=hat(i)+3hat(j)+hat(k), vec(b)=2hat(i)-hat(j)-hat(k) and vec(c )=lambda hat(j)+3hat(k)

For what value of 'lambda' are the following vectors coplanar ? vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 3hat(i)+hat(j)+2hat(k) and vec(c )=hat(i)+lambda hat(j)-3hat(k)

Knowledge Check

  • Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

    A
    Parallel
    B
    Antiparallel
    C
    Perpendicular
    D
    at acute angle with each other
  • Determine a vector product of vec(A)=hat(i)+hat(j)+hat(k)and vec(B)=-3hat(i)+hat(j)+hat(k)

    A
    `3hat(i)-hat(j)+4hat(k)`
    B
    `-3hat(i)+hat(j)+4hat(k)`
    C
    `3hat(i)+hat(j)-4hat(k)`
    D
    `-3hat(i)-hat(j)+4hat(k)`
  • Similar Questions

    Explore conceptually related problems

    For what value of 'lambda' are the following vectors coplanar ? vec(a)=2hat(i)-4hat(j)+5hat(k), vec(b)=hat(i)-lambda hat(j)+hat(k) and vec(c )= 3hat(i)+2hat(j)-5hat(k) .

    Find the value of lambda so that the vectors vec(a)=2hat(i)-3hat(j)+hat(k),vec(b)=hat(i)+2hat(j)-3hat(k) a nd vec(c)=hat(j)+lambda hat(k) are coplanar.

    Find vec(a).(vec(b)xx vec(c )) if : vec(a)=2hat(i)+hat(j)+3hat(k), vec(b)=-hat(i)+2hat(j)+hat(k) and vec(c )=3hat(i)+hat(j)+2hat(k) .

    Find the value of lambda so that the following vectors are coplanar: vec a=hat i-hat j+hat k,vec b=2hat i+hat j-hat k,vec c=lambdahat i-hat j+lambdahat k

    Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

    Find the value of lambda so that the following vectorts are coplanar: vec a=2hat i-hat j+hat k,vec b=hat i+2hat j-3hat k,vec c=lambdahat i+lambdahat j+5hat k