Home
Class 12
MATHS
Find the sum of the vectors : vec(a)=hat...

Find the sum of the vectors : `vec(a)=hat(i)-2hat(j),vec(b)=-2hat(i)-3hat(j)` and `vec(c )=2hat(i)+3hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the sum of the vectors \(\vec{a} = \hat{i} - 2\hat{j}\), \(\vec{b} = -2\hat{i} - 3\hat{j}\), and \(\vec{c} = 2\hat{i} + 3\hat{k}\), we will add the corresponding components of each vector. ### Step 1: Write down the vectors - \(\vec{a} = \hat{i} - 2\hat{j}\) - \(\vec{b} = -2\hat{i} - 3\hat{j}\) - \(\vec{c} = 2\hat{i} + 3\hat{k}\) ### Step 2: Group the components We will group the \( \hat{i} \), \( \hat{j} \), and \( \hat{k} \) components separately. - For \( \hat{i} \) components: \[ \text{Sum of } \hat{i} = 1 + (-2) + 2 \] - For \( \hat{j} \) components: \[ \text{Sum of } \hat{j} = -2 + (-3) + 0 \] - For \( \hat{k} \) components: \[ \text{Sum of } \hat{k} = 0 + 0 + 3 \] ### Step 3: Calculate the sums - Calculate the \( \hat{i} \) sum: \[ 1 - 2 + 2 = 1 \] - Calculate the \( \hat{j} \) sum: \[ -2 - 3 = -5 \] - Calculate the \( \hat{k} \) sum: \[ 0 + 0 + 3 = 3 \] ### Step 4: Combine the results Now, we combine the sums of the components: \[ \vec{S} = 1\hat{i} - 5\hat{j} + 3\hat{k} \] ### Final Result Thus, the sum of the vectors is: \[ \vec{S} = \hat{i} - 5\hat{j} + 3\hat{k} \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.1)|5 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.2)|19 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Objective Type Questions (C. True/False Questions)|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Find the sum of the vectors vec(a)=(hat(i)-3hat(k)), vec(b)=(2hat(j)-hat(k)) and vec(c)=(2hat(i)-3hat(j)+2hat(k)) .

Write a unit vector in the direction of the sum of the vectors : vec(a)=2hat(i)+2hat(j)-5hat(k) and vec(b)=2hat(i)+hat(j)+3hat(k) .

Show that the vectors vec(a)=(hat(i)+3hat(j)+hat(k)), vec(b)=(2hat(i)-hat(j)-hat(k)) and vec(c)=(7hat(j)+3hat(k)) are parallel to the same plane. {HINT : Show that [vec(a)vec(b)vec(c)]=0 }

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors vec(a)=2hat(i)-3hat(j)+hat(k),vec(b)=hat(i)-hat(j)+2hat(k) and vec(c)=2hat(i)+hat(j)-hat(k) .

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

Find the sum of the following vectors vec a=hat i-2hat j,vec b=2hat i-3hat j,vec c=2hat i+3hat k

Find the unit vector in the direction of the sum of the vectors : vec(a) = 2hat(i)-hat(j)+2hat(k) and vec(b)=-hat(i)+hat(j)+3hat(k) .

If vectors vec(a)=hat(i)-2hat(j)+hat(k), vec(b)=-2hat(i)+4hat(j)+5hat(k) and vec(c )=hat(i)-6hat(j)-7hat(k) , then find the value of |vec(a)+vec(b)+vec(c )| .

Find the volume of the parallelepiped whose edges are represented by the vectors vec(a)=(2hat(i)-3hat(j)+4hat(k)), vec(b)=(hat(i)+2hat(j)-hat(k)) and vec(c)=(3hat(i)-hat(j)+2hat(k)) .

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors (i) vec(a)=hat(i)+hat(j)+hat(k), vec(b)=hat(i)-hat(j)+hat(k), vec(c)=hat(i)+2hat(j)-hat(k) (ii) vec(a)=-3hat(i)+7hat(j)+5hat(k), vec(b)=-5hat(i)+7hat(j)-3hat(k), vec(c)= 7 hat(i)-5hat(j)-3hat(k) (iii) vec(a)=hat(i)-2hat(j)+3hat(k), vec(b)=2hat(i)+hat(j)-hat(k), vec(c)=hat(j)+hat(k) (iv) vec(a)=6hat(i), vec(b)=2hat(j), vec(c)=5hat(i)