Home
Class 12
MATHS
Compute the magnitude of the following ...

Compute the magnitude of the following vectors:` -> a= hat i+ hat j+ hat k`; ` -> b=2 hat i-7 hat j-3 hat k ; -> c=1/(sqrt(3)) hat i+1/(sqrt(3)) hat j-1/(sqrt(3)) hat k`

Text Solution

Verified by Experts

The correct Answer is:
1
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.3)|18 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.4)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise Ncert File Question from Ncert Book (Exercise 10.1)|5 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|11 Videos

Similar Questions

Explore conceptually related problems

Compute the magnitude of the following vectors: quad vec a=hat i+hat j+hat kvdotsvec b=2hat i-7hat j-3hat k;vec c=(1)/(sqrt(3))hat i+(1)/(sqrt(3))hat j-(1)/(sqrt(3))hat k

What is the magnitude of the vector 2 hat i -3 hat j + sqrt3 hat k ?

Knowledge Check

  • The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

    A
    `(4hati-hatj-5hatk)/(sqrt(42))`
    B
    `(4hati-hatj+5hatk)/(sqrt(42))`
    C
    `(4hati+hatj+5hatk)/(sqrt(42))`
    D
    `(4hati+hatj-5hatk)/(sqrt(42))`
  • Similar Questions

    Explore conceptually related problems

    The magnitude of the component of the vector (2 hat i+3 hat j + hat k) along (3 hat I = 4 hat k) is .

    Vectors vec A=hat i+hat j-2hat k and vec B=3hat i+3hat j-6hat k are

    Find the magnitude of the vector : (1)/(sqrt(3))hat(i)+(1)/(sqrt(3))hat(j)-(1)/(sqrt(3))hat(k)

    If the vectors 3 hat i +3 hat j +9 hat k and hat i +a hat j +3 hat k are parallel, then a =

    A unit vector parallel to the intersection of the planes vec rdot( hat i- hat j+ hat k)=5a n d vec rdot(2 hat i+ hat j-3 hat k)=4 a. (2 hat i+5 hat j-3 hat k)/(sqrt(38)) b. (-2 hat i+5 hat j-3 hat k)/(sqrt(38)) c. (2 hat i+5 hat j-3 hat k)/(sqrt(38)) d. (-2 hat i-5 hat j-3 hat k)/(sqrt(38))

    Show that each of the following triads of vectors are coplanar: vec a= hat i+2 hat j- hat k , vec b=3 hat i+2 hat j+7 hat k , vec c=5 hat i-6 hat j+5 hat k vec a=-4 hat i-6 hat j-2 hat k , vec b=- hat i+4 hat j+3 hat k , vec c=8 hat i- hat j+3 hat k hat a= hat i-2 hat j+3 hat k , vec b=-2 hat i+3 hat j-4 hat k , vec c= hat i-3 hat j+5 hat k

    Find the angle between the following pairs of lines: -> r=lambda( hat i+ hat j+2 hat k)\ a n d\ -> r=2 hat j+mu[(sqrt(3)-1) hat i-(sqrt(3)+1) hat j+4 hat k]dot