Home
Class 12
MATHS
Find the shortest distance between the l...

Find the shortest distance between the lines: `(i) vec(r) = 6 hat(i) + 2 hat(j) + 2 hatk + lambda (hati - 2hatj + 2 hatk)`
`and vec(r) = - 4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk ) `
(ii) `vec(r) = (4 hat(i) - hat(j)) + lambda (hati + 2hatj - 3 hatk)`
`and vec(r) = (hati - hatj + 2hatk) + mu (2 hati + 4 hatj - 5 hatk ) `
(iii) `vec(r) = (hati + 2 hatj - 4 hatk) + lambda (2 hati + 3 hatj + 6 hatk ) `
and `vec(r) = (3 hati + 3 hatj + 5 hatk) + mu (-2 hati + 3 hatj + 6 hatk ) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the given lines, we will use the formula for the shortest distance between two skew lines in vector form. The formula is given by: \[ d_{min} = \frac{|(\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D})|}{|\vec{B} \times \vec{D}|} \] Where: - \(\vec{A}\) and \(\vec{B}\) are the position vectors of the first line, - \(\vec{C}\) and \(\vec{D}\) are the position vectors of the second line, - \(\cdot\) denotes the dot product, - \(\times\) denotes the cross product. ### (i) Finding the shortest distance between the lines: 1. **Identify the vectors**: - For the first line: \[ \vec{A} = 6\hat{i} + 2\hat{j} + 2\hat{k}, \quad \vec{B} = \hat{i} - 2\hat{j} + 2\hat{k} \] - For the second line: \[ \vec{C} = -4\hat{i} - \hat{k}, \quad \vec{D} = 3\hat{i} - 2\hat{j} - 2\hat{k} \] 2. **Calculate \(\vec{C} - \vec{A}\)**: \[ \vec{C} - \vec{A} = (-4 - 6)\hat{i} + (0 - 2)\hat{j} + (0 - 2)\hat{k} = -10\hat{i} - 2\hat{j} - 2\hat{k} \] 3. **Calculate \(\vec{B} \times \vec{D}\)**: \[ \vec{B} \times \vec{D} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 3 & -2 & -2 \end{vmatrix} \] \[ = \hat{i}((-2)(-2) - (2)(-2)) - \hat{j}((1)(-2) - (2)(3)) + \hat{k}((1)(-2) - (-2)(3)) \] \[ = \hat{i}(4 + 4) - \hat{j}(-2 - 6) + \hat{k}(-2 + 6) \] \[ = 8\hat{i} + 8\hat{j} + 4\hat{k} \] 4. **Calculate the dot product \((\vec{C} - \vec{A}) \cdot (\vec{B} \times \vec{D})\)**: \[ (-10\hat{i} - 2\hat{j} - 2\hat{k}) \cdot (8\hat{i} + 8\hat{j} + 4\hat{k}) = (-10)(8) + (-2)(8) + (-2)(4) = -80 - 16 - 8 = -104 \] 5. **Calculate the magnitude of \(\vec{B} \times \vec{D}\)**: \[ |\vec{B} \times \vec{D}| = \sqrt{8^2 + 8^2 + 4^2} = \sqrt{64 + 64 + 16} = \sqrt{144} = 12 \] 6. **Calculate the shortest distance**: \[ d_{min} = \frac{| -104 |}{12} = \frac{104}{12} = \frac{26}{3} \approx 8.67 \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (D) (LONG ANSWER TYPE QUESTIONS(II) )|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (E) (SHORT ANSWER TYPE QUESTIONS )|23 Videos
  • THREE DIMENSIONAL GEOMETRY

    MODERN PUBLICATION|Exercise EXERCISE 11 (C) (LONG ANSWER TYPE QUESTIONS(II) )|8 Videos
  • RELATIONS AND FUNCTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 Videos
  • VECTOR ALGEBRA

    MODERN PUBLICATION|Exercise CHAPTER TEST 10|12 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between lines: vec(r) = 6 hati + 2 hatj + 2 hatk + lambda ( hati - 2 hatj + 2 hatk) and vec(r) = -4 hati - hatk + mu (3 hati - 2 hatj - 2 hatk) .

Find the shortest distance betwee the lines : vec(r) = (hati + 2 hatj + hatk ) + lambda ( hati - hatj + hatk) and vec(r) = 2 hati - hatj - hakt + mu (2 hati + hatj + 2 hatk) .

Knowledge Check

  • The shortest distance between the lines r = ( - hati - hatj - hatk ) + lamda ( 7 hati - 6 hatj + hatk ) and r = ( 3 hati + 5 hatj + 7 hatk ) + mu ( hati - 2 hatj + hatk )

    A
    ` sqrt ( 29 ) ` units
    B
    29 units
    C
    ` ( 2 9 ) / ( 2 ) ` units
    D
    ` 2 sqrt ( 29 ) ` units
  • Find the angle between the following pair of lines : vec(r) = hati + hatj - hatk + lambda (hati - 3 hatj + 2 hatk) and vec(r) = 2 hat(i) - hat(j) + mu (3 hat(i) + hatj - 2 hatk) .

    A
    `pi+cos^(-1) ((2)/(7))`
    B
    `cos^(-1) ((3)/(7))`
    C
    ` cos^(-1) ((2)/(7))`
    D
    `pi - cos^(-1) ((2)/(7))`
  • Similar Questions

    Explore conceptually related problems

    Find the shortest distance between the lines: (i) vec(r) = 3 hati + 8 hat(j) + 3 hatk + lambda (3 hati - hatj + hatk) and vec(r) = - 3 hat(i) - 7 hatj + 6 hatk + mu (-3 hati + 2 hatj + 4 hatk ) (ii) ( hati - hatj + 2 hatk) + lambda ( -2 hati + hatj + 3 hatk ) and (2 hati + 3 hatj - hatk) + mu (3 hati - 2 hatj + 2 hatk). (iii) vec(r) = (hati + 2 hatj + 3 hatk) + lambda ( hati - 3 hatj + 2 hatk ) and vec(r) = (4 hati + 5 hatj + 6 hatk) + mu (2 hati + 3 hatj + hatk) .

    Find the angle between the following pairs of lines : (i) vec(r) = 2 hati - 5 hatj + hatk + lambda (3 hati + 2 hatj + 6 hatk ) and vec(r) = 7 hati - 6 hatk + mu (hati + 2 hatj + 2 hatk) (ii) vec(r) = 3 hati + hatj - 2 hatk + lambda (hati - hatj - 2 hatk ) and vec(r) = 2 hati - hatj - 56 hatk + mu (3 hati - 5 hatj - 4 hatk) .

    Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

    Find the shortest distance between the lines vecr = 2hati - hatj + hatk + lambda(3hati - 2hatj + 5hatk), vecr = 3hati + 2hatj - 4hatk + mu(4hati - hatj + 3hatk)

    Find the shortest distance between the lines whose vector equations are : vec(r) = (hati + 2 hatj + 3 hatk ) + lambda (hati -3 hatj + 2 hatk) and vec(r) = 4 hati + 5 hatj + 6 hatk + mu (2 hati + 3 hatj + hatk) .

    Find the shortest distance between the lines vecr = hati+ hatj+hatk+lambda(3hati-hatj) and vecr=4hati-hatk+mu(2hati+3hatk)