(a) Obtain binomial probability distribution, if :
(i) `n=6,p=(1)/(3)` (ii) `n=5,p=(1)/(6)`.
(b) Suppose X has a binomial distribution `B(6,(1)/(2))`.
Show that X = 3 is the most likely outcome.
(a) Obtain binomial probability distribution, if :
(i) `n=6,p=(1)/(3)` (ii) `n=5,p=(1)/(6)`.
(b) Suppose X has a binomial distribution `B(6,(1)/(2))`.
Show that X = 3 is the most likely outcome.
(i) `n=6,p=(1)/(3)` (ii) `n=5,p=(1)/(6)`.
(b) Suppose X has a binomial distribution `B(6,(1)/(2))`.
Show that X = 3 is the most likely outcome.
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we will break it down into two parts as given in the question.
### Part (a): Obtain the binomial probability distribution
#### (i) For n = 6 and p = 1/3
1. **Identify q**:
\[
q = 1 - p = 1 - \frac{1}{3} = \frac{2}{3}
\]
2. **Write the binomial probability formula**:
The binomial probability formula is given by:
\[
P(X = x) = \binom{n}{x} p^x q^{n-x}
\]
where \( n = 6 \), \( p = \frac{1}{3} \), and \( q = \frac{2}{3} \).
3. **Substitute values into the formula**:
\[
P(X = x) = \binom{6}{x} \left(\frac{1}{3}\right)^x \left(\frac{2}{3}\right)^{6-x}
\]
4. **Calculate probabilities for x = 0 to 6**:
- For \( x = 0 \):
\[
P(X = 0) = \binom{6}{0} \left(\frac{1}{3}\right)^0 \left(\frac{2}{3}\right)^6 = 1 \cdot 1 \cdot \left(\frac{64}{729}\right) = \frac{64}{729}
\]
- For \( x = 1 \):
\[
P(X = 1) = \binom{6}{1} \left(\frac{1}{3}\right)^1 \left(\frac{2}{3}\right)^5 = 6 \cdot \frac{1}{3} \cdot \frac{32}{243} = \frac{192}{729}
\]
- For \( x = 2 \):
\[
P(X = 2) = \binom{6}{2} \left(\frac{1}{3}\right)^2 \left(\frac{2}{3}\right)^4 = 15 \cdot \frac{1}{9} \cdot \frac{16}{81} = \frac{240}{729}
\]
- For \( x = 3 \):
\[
P(X = 3) = \binom{6}{3} \left(\frac{1}{3}\right)^3 \left(\frac{2}{3}\right)^3 = 20 \cdot \frac{1}{27} \cdot \frac{8}{27} = \frac{160}{729}
\]
- For \( x = 4 \):
\[
P(X = 4) = \binom{6}{4} \left(\frac{1}{3}\right)^4 \left(\frac{2}{3}\right)^2 = 15 \cdot \frac{1}{81} \cdot \frac{4}{9} = \frac{60}{729}
\]
- For \( x = 5 \):
\[
P(X = 5) = \binom{6}{5} \left(\frac{1}{3}\right)^5 \left(\frac{2}{3}\right)^1 = 6 \cdot \frac{1}{243} \cdot \frac{2}{3} = \frac{12}{729}
\]
- For \( x = 6 \):
\[
P(X = 6) = \binom{6}{6} \left(\frac{1}{3}\right)^6 \left(\frac{2}{3}\right)^0 = 1 \cdot \frac{1}{729} \cdot 1 = \frac{1}{729}
\]
5. **Summarize the distribution**:
The binomial probability distribution for \( n = 6 \) and \( p = \frac{1}{3} \) is:
\[
P(X = 0) = \frac{64}{729}, \quad P(X = 1) = \frac{192}{729}, \quad P(X = 2) = \frac{240}{729}, \quad P(X = 3) = \frac{160}{729}, \quad P(X = 4) = \frac{60}{729}, \quad P(X = 5) = \frac{12}{729}, \quad P(X = 6) = \frac{1}{729}
\]
#### (ii) For n = 5 and p = 1/6
1. **Identify q**:
\[
q = 1 - p = 1 - \frac{1}{6} = \frac{5}{6}
\]
2. **Write the binomial probability formula**:
\[
P(X = x) = \binom{5}{x} \left(\frac{1}{6}\right)^x \left(\frac{5}{6}\right)^{5-x}
\]
3. **Calculate probabilities for x = 0 to 5**:
- For \( x = 0 \):
\[
P(X = 0) = \binom{5}{0} \left(\frac{1}{6}\right)^0 \left(\frac{5}{6}\right)^5 = 1 \cdot 1 \cdot \left(\frac{3125}{7776}\right) = \frac{3125}{7776}
\]
- For \( x = 1 \):
\[
P(X = 1) = \binom{5}{1} \left(\frac{1}{6}\right)^1 \left(\frac{5}{6}\right)^4 = 5 \cdot \frac{1}{6} \cdot \frac{625}{1296} = \frac{3125}{7776}
\]
- For \( x = 2 \):
\[
P(X = 2) = \binom{5}{2} \left(\frac{1}{6}\right)^2 \left(\frac{5}{6}\right)^3 = 10 \cdot \frac{1}{36} \cdot \frac{125}{216} = \frac{1250}{7776}
\]
- For \( x = 3 \):
\[
P(X = 3) = \binom{5}{3} \left(\frac{1}{6}\right)^3 \left(\frac{5}{6}\right)^2 = 10 \cdot \frac{1}{216} \cdot \frac{25}{36} = \frac{250}{7776}
\]
- For \( x = 4 \):
\[
P(X = 4) = \binom{5}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^1 = 5 \cdot \frac{1}{1296} \cdot \frac{5}{6} = \frac{25}{7776}
\]
- For \( x = 5 \):
\[
P(X = 5) = \binom{5}{5} \left(\frac{1}{6}\right)^5 \left(\frac{5}{6}\right)^0 = 1 \cdot \frac{1}{7776} \cdot 1 = \frac{1}{7776}
\]
4. **Summarize the distribution**:
The binomial probability distribution for \( n = 5 \) and \( p = \frac{1}{6} \) is:
\[
P(X = 0) = \frac{3125}{7776}, \quad P(X = 1) = \frac{3125}{7776}, \quad P(X = 2) = \frac{1250}{7776}, \quad P(X = 3) = \frac{250}{7776}, \quad P(X = 4) = \frac{25}{7776}, \quad P(X = 5) = \frac{1}{7776}
\]
### Part (b): Show that X = 3 is the most likely outcome for X ~ B(6, 1/2)
1. **Identify parameters**:
Here, \( n = 6 \) and \( p = \frac{1}{2} \). Thus, \( q = 1 - p = \frac{1}{2} \).
2. **Write the binomial probability formula**:
\[
P(X = x) = \binom{6}{x} \left(\frac{1}{2}\right)^x \left(\frac{1}{2}\right)^{6-x} = \binom{6}{x} \left(\frac{1}{2}\right)^6
\]
3. **Calculate probabilities for x = 0 to 6**:
- For \( x = 0 \):
\[
P(X = 0) = \binom{6}{0} \left(\frac{1}{2}\right)^6 = 1 \cdot \frac{1}{64} = \frac{1}{64}
\]
- For \( x = 1 \):
\[
P(X = 1) = \binom{6}{1} \left(\frac{1}{2}\right)^6 = 6 \cdot \frac{1}{64} = \frac{6}{64} = \frac{3}{32}
\]
- For \( x = 2 \):
\[
P(X = 2) = \binom{6}{2} \left(\frac{1}{2}\right)^6 = 15 \cdot \frac{1}{64} = \frac{15}{64}
\]
- For \( x = 3 \):
\[
P(X = 3) = \binom{6}{3} \left(\frac{1}{2}\right)^6 = 20 \cdot \frac{1}{64} = \frac{20}{64} = \frac{5}{16}
\]
- For \( x = 4 \):
\[
P(X = 4) = \binom{6}{4} \left(\frac{1}{2}\right)^6 = 15 \cdot \frac{1}{64} = \frac{15}{64}
\]
- For \( x = 5 \):
\[
P(X = 5) = \binom{6}{5} \left(\frac{1}{2}\right)^6 = 6 \cdot \frac{1}{64} = \frac{6}{64} = \frac{3}{32}
\]
- For \( x = 6 \):
\[
P(X = 6) = \binom{6}{6} \left(\frac{1}{2}\right)^6 = 1 \cdot \frac{1}{64} = \frac{1}{64}
\]
4. **Summarize the distribution**:
The probabilities are:
\[
P(X = 0) = \frac{1}{64}, \quad P(X = 1) = \frac{3}{32}, \quad P(X = 2) = \frac{15}{64}, \quad P(X = 3) = \frac{5}{16}, \quad P(X = 4) = \frac{15}{64}, \quad P(X = 5) = \frac{3}{32}, \quad P(X = 6) = \frac{1}{64}
\]
5. **Identify the most likely outcome**:
The highest probability occurs at \( x = 3 \) where \( P(X = 3) = \frac{5}{16} \). Thus, \( X = 3 \) is the most likely outcome.
|
Topper's Solved these Questions
PROBABILITY
MODERN PUBLICATION|Exercise EXERCISE 13 (g) (LATQ)|21 VideosView PlaylistPROBABILITY
MODERN PUBLICATION|Exercise EXERCISE 13 (h) (LATQ)|20 VideosView PlaylistPROBABILITY
MODERN PUBLICATION|Exercise EXERCISE 13 (f) (LATQ II)|5 VideosView PlaylistMATRICES
MODERN PUBLICATION|Exercise CHAPTER TEST (3)|12 VideosView PlaylistRELATIONS AND FUNCTIONS
MODERN PUBLICATION|Exercise CHAPTER TEST (1)|12 VideosView Playlist
Similar Questions
Explore conceptually related problems
Obtain the Binomial Probability Distribution, if n=6,p=(1)/(5) .
Watch solution
Find the mean of the Binomial distribution B(4,(1)/(3))
Watch solution
Knowledge Check
If in a binomial distribution n=4 P(X=0) =(16)/(81) , then P(X=4) equals
If in a binomial distribution n=4 P(X=0) =(16)/(81) , then P(X=4) equals
A
`(1)/(16)`
B
`(1)/(81)`
C
`(1)/(27)`
D
`(1)/(8)`
Submit
In a binomial distribution with n= 4 2. P(X=3) =3. P (X=2) ,then the vlaue of p is
In a binomial distribution with n= 4 2. P(X=3) =3. P (X=2) ,then the vlaue of p is
A
`4/13`
B
`5/13`
C
`9/13`
D
`6/13`
Submit
In binomial probability distribution, mean is 3 and standard deviation is 3/2 . Then the value of p is
In binomial probability distribution, mean is 3 and standard deviation is 3/2 . Then the value of p is
A
`1/4`
B
`3/4`
C
`1/2`
D
`1/3`
Submit
Similar Questions
Explore conceptually related problems
Suppose X has a binomial distribution B(6,(1)/(2)) .Show that X=3 is the most likely outcome.(Hint: is the maximum among all P(x_(i)),x_(i)=0,1,2,3,4,5,6)
Watch solution
If for a binomial distribution P(X=1)=P(X=2)=alpha, write P(X=4) in terms of alpha.
Watch solution
If for a binomial distribution with n=5, 4P(X=1)=P(X=2) , the probability of success is
Watch solution
For binomial distribution E(x)=2,V(x)=(4)/(3). Find the value of n
Watch solution
If X has a poisson distribution such that P(x=2)=(2)/(3)P(x=1) then P(x=3) is
Watch solution